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Abstract. The Hardware Description Languages (HDL) are the only efficient solution for complex logical 
design. In the last years some specific HDLs were imposed by the logical design market, most used being 
Verilog and VHDL. This material contains two parts. The first part takes a view of VHDL and Verilog by 
comparing their similarities and contrasting their differences. The second part contains an example of a model 
of a 4-bit multiplexer in VHDL and Verilog. Some advantages of each one are revealed based on a similar 
logical structure simulation. 
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1. Introduction 

 
As literature is mentioning [3], [4], [6], [7] there 
are now two industry standard hardware 
description languages, VHDL and Verilog. The 
complexity of ASIC and FPGA designs has 
meant an increase in the number of specialist 
design consultants with specific tools and with 
their own libraries of macro and mega cells 
written in either VHDL or Verilog. As a result, 
it is important that designers know both VHDL 
and Verilog specificity as available EDA 
vendors tools are covering both approaches. 
 
Verilog was introduced in 1985 by Gateway 
Design System Corporation, now a part of 
Cadence Design Systems, Inc.’s Systems 
Division. Until May, 1990, with the formation 
of Open Verilog International (OVI), Verilog 
HDL was a proprietary language of Cadence. 
Cadence bought Gateway in 1989 and opened 
Verilog to the public domain in 1990. It became 
IEEE standard 1364 in December 1995. 
 
VHDL (Very high speed integrated circuit 
Hardware Description Language) arose out of 
the United States Government’s Very High 
Speed Integrated Circuits (VHSIC) program, 
initiated in 1980. In the course of this program, 
it became clear that there was a need for a 
standard language for describing the structure 

and function of integrated circuits (ICs). Hence 
the VHSIC Hardware Description Language 
(VHDL) was developed, and subsequently 
adopted as a standard by the Institute of 
Electrical and Electronic Engineers (IEEE) in 
the US. 
 
2. Verilog versus VHDL, an overview 
 
Verilog HDL [1], [6] allows a hardware designer 
to describe designs at a high level of abstraction 
such as at the architectural or behavioural level 
as well as the lower implementation levels (i. e. , 
gate and switch levels) leading to Very Large 
Scale Integration (VLSI) Integrated Circuits 
(IC) layouts and chip fabrication. A primary use 
of HDLs is the simulation of designs before the 
designer must commit to fabrication.  
 
VHDL [2], [3], [7] is a language for describing 
digital electronic systems. It is designed to fill a 
number of needs in the design process. Firstly, it 
allows description of the structure of a design 
that is how it is decomposed into sub-designs, 
and how those sub-designs are interconnected. 
Secondly, it allows the specification of the 
function of designs using familiar programming 
language forms. Thirdly, as a result, it allows a 
design to be simulated before being 
manufactured, so that designers can quickly 
compare alternatives and test for correctness 
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without the delay and expense of hardware 
prototyping. 
Hardware structure can be modeled equally 
effectively in both VHDL and Verilog. When 
modeling abstract hardware, the capability of 
VHDL can sometimes only be achieved in 
Verilog when using the PLI.  
 
As some articles [4] are pointing, there are some 
structural and conceptual differences on Verilog 
and VHDL but also a lot of similarities, as 
shown below. 
 
Regarding from the point of view of the lexical 
conventions, Verilog is close to the 
programming language C++. Comments are 
designated by // to the end of a line or by /* to */ 
across several lines. Keywords, e. g., module, 
are reserved and in all lower case letters. The 
language is case sensitive, meaning upper and 
lower case letters are different. Spaces are 
important in that they delimit tokens in the 
language.  
Meanwhile, in VHDL Comments start with two 
adjacent hyphens (‘--’) and extend to the end of 
the line. They have no part in the meaning of a 
VHDL description. The case of letters is not 
considered significant, so the identifiers mux and 
Mux are the same. Underline characters in 
identifiers are significant, so This_Name and 
ThisName are different identifiers. 
 
As the program structure level the Verilog 
language describes a digital system as a set of 
modules. Each of these modules has an interface 
to other modules to describe how they are 
interconnected. Usually we place one module 
per file but that is not a requirement. The 
modules may run concurrently, but usually we 
have one top level module which specifies a 
closed system containing both test data and 
hardware models. The top level module invokes 
instances of other modules. Modules can 
represent pieces of hardware ranging from 
simple gates to complete systems, e. g., a 
microprocessor.  
A VHDL digital electronic system can be 
described as a module with inputs and/or 

outputs. One way of describing the function of a 
module is to describe how it is composed of sub-
modules. Each of the sub-modules is an instance 
of some entity, and the ports of the instances are 
connected using signals. More complex 
behaviours cannot be described purely as a 
function of inputs. In systems with feedback, the 
outputs are also a function of time. VHDL 
solves this problem by allowing description of 
behaviour in the form of an executable program.  
 
Since the purpose of Verilog HDL is to model 
digital hardware, the primary data types are for 
modeling registers (reg) and wires (wire). The 
reg variables store the last value that was 
procedurally assigned to them whereas the wire 
variables represent physical connections 
between structural entities such as gates. A wire 
does not store a value. A wire variable is really 
only a label on a wire. For the convenience of 
the designer, Verilog has several data types 
which do not have a corresponding hardware 
realization. These data types include integer, 
real and time. The data types integer and real 
behave pretty much as in other languages, e. g., 
C. 
VHDL data types provide a number of basic, or 
scalar, types, and a means of forming composite 
types. The scalar types include numbers, 
physical quantities, and enumerations (including 
enumerations of characters), and there are a 
number of standard predefined basic types. The 
composite types provided are arrays and records. 
 
Some minor differences could be finding at the 
available operators’ level. The majority of 
operators are the same between the two 
languages. Verilog does have very useful unary 
reduction operators that are not in VHDL. A 
loop statement can be used in VHDL to perform 
the same operation as a Verilog unary reduction 
operator. VHDL has the mod operator that is not 
found in Verilog. Same on procedures and 
tasks: Verilog does not allow concurrent task 
calls, VHDL allows concurrent procedure calls. 
 
Like compilation the Verilog language is still 
rooted in its native interpretative mode. 
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There are also more constructs and features for 
high-level modelings in VHDL than there are in 
Verilog. Abstract data types can be used along 
with the following statements: package 
statements for model reuse, configuration 
statements for configuring design structure, 
generate statements for replicating structure, 
generic statements for generic models that can 
be individually characterized. Except for being 
able to parameterize models by overloading 
parameter constants, there is no equivalent to the 
high-level VHDL modeling statements in 
Verilog 

Compilation is a means of speeding up 
simulation, but has not changed the original 
nature of the language. As a result care must be 
taken with both the compilation order of code 
written in a single file and the compilation order 
of multiple files. Simulation results can change 
by simply changing the order of compilation. On 
VHDL, multiple design-units (entity/architecture 
pairs), that reside in the same system file, may 
be separately compiled. However, it is good 
design practice to keep each design unit in its 
own system file in which case separate 
compilation should not be an issue. 

  
Using one language or another is more a matter 
of coding style and experience than language 
feature. Verilog is more like C because its 
constructs are based approximately 50% on C 
and 50% on Ada. VHDL is a concise and 
verbose language; its roots are based on Ada. 
For this reason an C programmer may prefer 
Verilog over VHDL. Although a programmer of 
both C and Ada may find the mix of constructs 
somewhat confusing at first.  

On Verilog, functions and procedures used 
within a model must be defined in the module. 
To make functions and procedures generally 
accessible from different module statements the 
functions and procedures must be placed in a 
separate system file and included using include 
compiler directive. VHDL procedures and 
functions may be placed in a package so that 
they are available to any design-unit that wishes 
to use them. 
  
Concerning the libraries, there is no concept of 
a library in Verilog. This is due to it's origins as 
an interpretive language while in VHDL, a 
library is a store for compiled entities, 
architectures, packages and configurations. 
Libraries are useful for managing multiple 
design projects. 

Starting with zero knowledge of either language, 
Verilog is probably the easiest to learn and 
understand. This assumes the Verilog compiler 
directive language for simulation and the PLI 
language is not included. If these languages are 
included they can be looked upon as two 
additional languages that need to be learned.  
VHDL may seem less intuitive at first for two 
reasons.  First, it is very strongly typed; a 
feature that makes it robust and powerful for the 
advanced user after a longer learning phase. 
Second, there are many ways to model the same 
circuit, especially those with large hierarchical 
structures. 

 
The Verilog language was developed with gate 
level modeling and has very good constructs for 
modeling at this level and for modeling the cell 
primitives of ASIC and FPGA libraries. 
Examples include User Defined Primitives 
(UDP), truth tables and the specify block for 
specifying timing delays across a module. In 
VHDL simple two input logical operators are 
built and they are: NOT, AND, OR, NAND, 
NOR, XOR and XNOR. Any timing must be 
separately specified using the after clause.  

 
3. Modeled example in VHDL and Verilog 
 
In this section we will look at a small example 
of a Verilog and VHDL descriptions of a 4-bit 
multiplexer to give you a feel for the language 
and how it is used. 
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Figure 1. Verilog Model Simulation 
 
 

The semantics of the module construct in 
Verilog is very different from subroutines, 
procedures and functions in other languages. A 
module is never called! A module is instantiated 
at the start of the program and stays around for 
the life of the program. A Verilog module 
instantiation is used to model a hardware circuit. 
Each time a module is instantiated, we give its 
instantiation a name.  

We start the description of a circuit by 
specifying its external interface, which includes 
a description of its ports. The multiplexer might 
be defined so that: when the signal Sel is ”0” 
logic multiplexer’s output (y) is equal with first 
input (a), else with second input (b). 
 
Verilog Model 
In module MUX, we declared In1 and In2 as 4-
bit inputs, DataOut a 4-bit output and register 
and Sel is a 1-bit input. Inside of the module we 
have one “always” construct. The always 
construct is the same as the initial construct 
except that it loops forever as long as the 
simulation runs. Within the initial construct, 
statements are executed sequentially much like 
in C or other traditional imperative 
programming languages. 

Verilog model for described MUX is shown 
below. 
 
module MUX (In1, In2, Sel, DataOut); 
 
input[3:0] In1; 
input[3:0] In2; 
input Sel; 
output[3:0] DataOut; 
reg[3:0] DataOut; 
 The notation #5 means to execute the statement 

after delay of 5 units of simulated time, before 
calling the system task $stop and stop the 
simulation. Notice that all the statements in the 
second initial are done at time = 0, since there 
are no delay statements, i. e., #<integer>. 

//---------------------------------------------- 
// Model Multiplexer algorithm 
//---------------------------------------------- 
 
always@(In1 or In2 or Sel) 
begin 
  if(Sel==0) 

         
 
4 



 Advances in Electrical and Computer Engineering                                                   Volume 1 (8), Number 1 (15), 2001 

        DataOut=In1;      In2=1; 
  else for(i=0;i<=8;i=i+1) 
  if(Sel==1) begin 
         DataOut =In2;             #5 Sel=0; 

            #4 Sel=1; end 
  In1=In1+1;  
  In2=In2+1; endmodule 
end  

//---------------------------------------------- end 
// Test Multiplexer algorithm  
//---------------------------------------------- initial 
 #1000 $stop; 
module Test ();  
 endmodule 
reg[3:0] In1;  

 reg[3:0] In2; 
reg Sel; VHDL Model 
wire[3:0] DataOut; A digital system is usually designed as a 

hierarchical collection of modules. Each module 
has a set of ports which constitute its interface to 
the outside world. In VHDL, an entity is such a 
module which may be used as a component in a 
design, or which may be the top level module of 
the design.  

integer i; 
 
MUX Multiplexer(In1,In2,Sel,DataOut); 
 
initial 
begin 
i=8; 
#5 In1=0; 
 

 

  
 

Figure 2. VHDL Model Simulation 
The entity may include specification of generic 
constants, which can be used to control the 

structure and behaviour of the entity, and ports, 
which channel information into and out of the 
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entity. An implementation of the entity is 
described in an architecture body. There may be 
more than one architecture body corresponding 
to a single entity specification, each of which 
describes a different view of the entity. The 
architecture contains an instance of the named 
component, with actual values specified for 
generic constants, and with the component ports 
connected to actual signals or entity ports. 
VHDL model for described MUX is shown 
below. 
 
library ieee; 
use ieee.std_logic_1164.all; 
 
entity mux is 
          port(a,b : in std_logic_vector(0 to 3); 
        sel : in std_logic;          
y : out std_logic_vector(0 to 3)); 
end mux; 
 
architecture amux of mux is 
begin 
l:process(a,b,sel) 
begin 
if(sel='0') then 
 y<=a; 
else 
 y<=b; 
end if;  
end process; 
end amux; 
-- ------------------------------------------------- 
-- Model Multiplexer algorithm 
-- ------------------------------------------------- 
library ieee; 
use ieee.std_logic_1164.all; 
 
entity test is 
end test; 
 
architecture test of test is 
    signal a,b:std_logic_vector(0 to 3); 
    signal sel:std_logic:='0'; 
    signal y:std_logic_vector(0 to 3); 
 
component muxc 
port(a,b : in std_logic_vector(0 to 3); 
        sel : in std_logic; 
        y : out std_logic_vector(0 to 3)); 
end component; 
 
for all:muxc use entity work.mux(amux); 
 
begin 

dut:muxc port map(a,b,sel,y); 
 
sel<=not sel after 10 ns; 
 
a<="0000", "0001" after 10 ns, "0010" after 30 ns, 
"0011" after 50 ns,"0100" after 70 ns, "0101" after 
90 ns,"0110" after 110 ns, "0111" after 130 
ns,"1000" after 150 ns; 
 
b<="0001", "0010" after 10 ns, "0011" after 30 
ns,"0100" after 50 ns, "0101" after 70 ns, "0110" 
after 90 ns, "0111" after 110 ns,"1000" after 130 ns, 
"1001" after 150 ns; 
 
end test; 
 
4. Conclusions 
 
The reasons for the importance of being able to 
model hardware in both VHDL and Verilog 
have been discussed. VHDL and Verilog has 
been extensively compared and contrasted in a 
neutral manner and a tutorial has been posed as 
a problem and solution to demonstrate the issues 
above.  
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