
 Advances in Electrical and Computer Engineering Volume 1 (8), Number 1 (15), 2001

HARDWARE DESCRIPTION LANGUAGES, A COMPARATIVE APPROACH

Iuliana PATENTARU, Alin Dan POTORAC
iuliap@eed.usv.ro, alinp@eed.usv.ro
"Stefan cel Mare" University of Suceava
str.Universitatii nr.9, RO-5800 Suceava

Abstract. The Hardware Description Languages (HDL) are the only efficient solution for complex logical
design. In the last years some specific HDLs were imposed by the logical design market, most used being
Verilog and VHDL. This material contains two parts. The first part takes a view of VHDL and Verilog by
comparing their similarities and contrasting their differences. The second part contains an example of a model
of a 4-bit multiplexer in VHDL and Verilog. Some advantages of each one are revealed based on a similar
logical structure simulation.
Keywords: Hardware Description Language, Verilog, VHDL, logical design, modeling, simulation

1. Introduction

As literature is mentioning [3], [4], [6], [7] there
are now two industry standard hardware
description languages, VHDL and Verilog. The
complexity of ASIC and FPGA designs has
meant an increase in the number of specialist
design consultants with specific tools and with
their own libraries of macro and mega cells
written in either VHDL or Verilog. As a result,
it is important that designers know both VHDL
and Verilog specificity as available EDA
vendors tools are covering both approaches.

Verilog was introduced in 1985 by Gateway
Design System Corporation, now a part of
Cadence Design Systems, Inc.’s Systems
Division. Until May, 1990, with the formation
of Open Verilog International (OVI), Verilog
HDL was a proprietary language of Cadence.
Cadence bought Gateway in 1989 and opened
Verilog to the public domain in 1990. It became
IEEE standard 1364 in December 1995.

VHDL (Very high speed integrated circuit
Hardware Description Language) arose out of
the United States Government’s Very High
Speed Integrated Circuits (VHSIC) program,
initiated in 1980. In the course of this program,
it became clear that there was a need for a
standard language for describing the structure

and function of integrated circuits (ICs). Hence
the VHSIC Hardware Description Language
(VHDL) was developed, and subsequently
adopted as a standard by the Institute of
Electrical and Electronic Engineers (IEEE) in
the US.

2. Verilog versus VHDL, an overview

Verilog HDL [1], [6] allows a hardware designer
to describe designs at a high level of abstraction
such as at the architectural or behavioural level
as well as the lower implementation levels (i. e. ,
gate and switch levels) leading to Very Large
Scale Integration (VLSI) Integrated Circuits
(IC) layouts and chip fabrication. A primary use
of HDLs is the simulation of designs before the
designer must commit to fabrication.

VHDL [2], [3], [7] is a language for describing
digital electronic systems. It is designed to fill a
number of needs in the design process. Firstly, it
allows description of the structure of a design
that is how it is decomposed into sub-designs,
and how those sub-designs are interconnected.
Secondly, it allows the specification of the
function of designs using familiar programming
language forms. Thirdly, as a result, it allows a
design to be simulated before being
manufactured, so that designers can quickly
compare alternatives and test for correctness

1

Advances in Electrical and Computer Engineering Volume 1 (8), Number 1 (15), 2001

without the delay and expense of hardware
prototyping.
Hardware structure can be modeled equally
effectively in both VHDL and Verilog. When
modeling abstract hardware, the capability of
VHDL can sometimes only be achieved in
Verilog when using the PLI.

As some articles [4] are pointing, there are some
structural and conceptual differences on Verilog
and VHDL but also a lot of similarities, as
shown below.

Regarding from the point of view of the lexical
conventions, Verilog is close to the
programming language C++. Comments are
designated by // to the end of a line or by /* to */
across several lines. Keywords, e. g., module,
are reserved and in all lower case letters. The
language is case sensitive, meaning upper and
lower case letters are different. Spaces are
important in that they delimit tokens in the
language.
Meanwhile, in VHDL Comments start with two
adjacent hyphens (‘--’) and extend to the end of
the line. They have no part in the meaning of a
VHDL description. The case of letters is not
considered significant, so the identifiers mux and
Mux are the same. Underline characters in
identifiers are significant, so This_Name and
ThisName are different identifiers.

As the program structure level the Verilog
language describes a digital system as a set of
modules. Each of these modules has an interface
to other modules to describe how they are
interconnected. Usually we place one module
per file but that is not a requirement. The
modules may run concurrently, but usually we
have one top level module which specifies a
closed system containing both test data and
hardware models. The top level module invokes
instances of other modules. Modules can
represent pieces of hardware ranging from
simple gates to complete systems, e. g., a
microprocessor.
A VHDL digital electronic system can be
described as a module with inputs and/or

outputs. One way of describing the function of a
module is to describe how it is composed of sub-
modules. Each of the sub-modules is an instance
of some entity, and the ports of the instances are
connected using signals. More complex
behaviours cannot be described purely as a
function of inputs. In systems with feedback, the
outputs are also a function of time. VHDL
solves this problem by allowing description of
behaviour in the form of an executable program.

Since the purpose of Verilog HDL is to model
digital hardware, the primary data types are for
modeling registers (reg) and wires (wire). The
reg variables store the last value that was
procedurally assigned to them whereas the wire
variables represent physical connections
between structural entities such as gates. A wire
does not store a value. A wire variable is really
only a label on a wire. For the convenience of
the designer, Verilog has several data types
which do not have a corresponding hardware
realization. These data types include integer,
real and time. The data types integer and real
behave pretty much as in other languages, e. g.,
C.
VHDL data types provide a number of basic, or
scalar, types, and a means of forming composite
types. The scalar types include numbers,
physical quantities, and enumerations (including
enumerations of characters), and there are a
number of standard predefined basic types. The
composite types provided are arrays and records.

Some minor differences could be finding at the
available operators’ level. The majority of
operators are the same between the two
languages. Verilog does have very useful unary
reduction operators that are not in VHDL. A
loop statement can be used in VHDL to perform
the same operation as a Verilog unary reduction
operator. VHDL has the mod operator that is not
found in Verilog. Same on procedures and
tasks: Verilog does not allow concurrent task
calls, VHDL allows concurrent procedure calls.

Like compilation the Verilog language is still
rooted in its native interpretative mode.

2

 Advances in Electrical and Computer Engineering Volume 1 (8), Number 1 (15), 2001

There are also more constructs and features for
high-level modelings in VHDL than there are in
Verilog. Abstract data types can be used along
with the following statements: package
statements for model reuse, configuration
statements for configuring design structure,
generate statements for replicating structure,
generic statements for generic models that can
be individually characterized. Except for being
able to parameterize models by overloading
parameter constants, there is no equivalent to the
high-level VHDL modeling statements in
Verilog

Compilation is a means of speeding up
simulation, but has not changed the original
nature of the language. As a result care must be
taken with both the compilation order of code
written in a single file and the compilation order
of multiple files. Simulation results can change
by simply changing the order of compilation. On
VHDL, multiple design-units (entity/architecture
pairs), that reside in the same system file, may
be separately compiled. However, it is good
design practice to keep each design unit in its
own system file in which case separate
compilation should not be an issue.

Using one language or another is more a matter
of coding style and experience than language
feature. Verilog is more like C because its
constructs are based approximately 50% on C
and 50% on Ada. VHDL is a concise and
verbose language; its roots are based on Ada.
For this reason an C programmer may prefer
Verilog over VHDL. Although a programmer of
both C and Ada may find the mix of constructs
somewhat confusing at first.

On Verilog, functions and procedures used
within a model must be defined in the module.
To make functions and procedures generally
accessible from different module statements the
functions and procedures must be placed in a
separate system file and included using include
compiler directive. VHDL procedures and
functions may be placed in a package so that
they are available to any design-unit that wishes
to use them.

Concerning the libraries, there is no concept of
a library in Verilog. This is due to it's origins as
an interpretive language while in VHDL, a
library is a store for compiled entities,
architectures, packages and configurations.
Libraries are useful for managing multiple
design projects.

Starting with zero knowledge of either language,
Verilog is probably the easiest to learn and
understand. This assumes the Verilog compiler
directive language for simulation and the PLI
language is not included. If these languages are
included they can be looked upon as two
additional languages that need to be learned.
VHDL may seem less intuitive at first for two
reasons. First, it is very strongly typed; a
feature that makes it robust and powerful for the
advanced user after a longer learning phase.
Second, there are many ways to model the same
circuit, especially those with large hierarchical
structures.

The Verilog language was developed with gate
level modeling and has very good constructs for
modeling at this level and for modeling the cell
primitives of ASIC and FPGA libraries.
Examples include User Defined Primitives
(UDP), truth tables and the specify block for
specifying timing delays across a module. In
VHDL simple two input logical operators are
built and they are: NOT, AND, OR, NAND,
NOR, XOR and XNOR. Any timing must be
separately specified using the after clause.

3. Modeled example in VHDL and Verilog

In this section we will look at a small example
of a Verilog and VHDL descriptions of a 4-bit
multiplexer to give you a feel for the language
and how it is used.

3

Advances in Electrical and Computer Engineering Volume 1 (8), Number 1 (15), 2001

Figure 1. Verilog Model Simulation

The semantics of the module construct in
Verilog is very different from subroutines,
procedures and functions in other languages. A
module is never called! A module is instantiated
at the start of the program and stays around for
the life of the program. A Verilog module
instantiation is used to model a hardware circuit.
Each time a module is instantiated, we give its
instantiation a name.

We start the description of a circuit by
specifying its external interface, which includes
a description of its ports. The multiplexer might
be defined so that: when the signal Sel is ”0”
logic multiplexer’s output (y) is equal with first
input (a), else with second input (b).

Verilog Model
In module MUX, we declared In1 and In2 as 4-
bit inputs, DataOut a 4-bit output and register
and Sel is a 1-bit input. Inside of the module we
have one “always” construct. The always
construct is the same as the initial construct
except that it loops forever as long as the
simulation runs. Within the initial construct,
statements are executed sequentially much like
in C or other traditional imperative
programming languages.

Verilog model for described MUX is shown
below.

module MUX (In1, In2, Sel, DataOut);

input[3:0] In1;
input[3:0] In2;
input Sel;
output[3:0] DataOut;
reg[3:0] DataOut;
 The notation #5 means to execute the statement

after delay of 5 units of simulated time, before
calling the system task $stop and stop the
simulation. Notice that all the statements in the
second initial are done at time = 0, since there
are no delay statements, i. e., #<integer>.

//--
// Model Multiplexer algorithm
//--

always@(In1 or In2 or Sel)
begin
 if(Sel==0)

4

 Advances in Electrical and Computer Engineering Volume 1 (8), Number 1 (15), 2001

 DataOut=In1; In2=1;
 else for(i=0;i<=8;i=i+1)
 if(Sel==1) begin
 DataOut =In2; #5 Sel=0;

 #4 Sel=1; end
 In1=In1+1;
 In2=In2+1; endmodule
end

//-- end
// Test Multiplexer algorithm
//-- initial
 #1000 $stop;
module Test ();
 endmodule
reg[3:0] In1;

 reg[3:0] In2;
reg Sel; VHDL Model
wire[3:0] DataOut; A digital system is usually designed as a

hierarchical collection of modules. Each module
has a set of ports which constitute its interface to
the outside world. In VHDL, an entity is such a
module which may be used as a component in a
design, or which may be the top level module of
the design.

integer i;

MUX Multiplexer(In1,In2,Sel,DataOut);

initial
begin
i=8;
#5 In1=0;

Figure 2. VHDL Model Simulation
The entity may include specification of generic
constants, which can be used to control the

structure and behaviour of the entity, and ports,
which channel information into and out of the

5

Advances in Electrical and Computer Engineering Volume 1 (8), Number 1 (15), 2001

entity. An implementation of the entity is
described in an architecture body. There may be
more than one architecture body corresponding
to a single entity specification, each of which
describes a different view of the entity. The
architecture contains an instance of the named
component, with actual values specified for
generic constants, and with the component ports
connected to actual signals or entity ports.
VHDL model for described MUX is shown
below.

library ieee;
use ieee.std_logic_1164.all;

entity mux is
 port(a,b : in std_logic_vector(0 to 3);
 sel : in std_logic;
y : out std_logic_vector(0 to 3));
end mux;

architecture amux of mux is
begin
l:process(a,b,sel)
begin
if(sel='0') then
 y<=a;
else
 y<=b;
end if;
end process;
end amux;
-- ---
-- Model Multiplexer algorithm
-- ---
library ieee;
use ieee.std_logic_1164.all;

entity test is
end test;

architecture test of test is
 signal a,b:std_logic_vector(0 to 3);
 signal sel:std_logic:='0';
 signal y:std_logic_vector(0 to 3);

component muxc
port(a,b : in std_logic_vector(0 to 3);
 sel : in std_logic;
 y : out std_logic_vector(0 to 3));
end component;

for all:muxc use entity work.mux(amux);

begin

dut:muxc port map(a,b,sel,y);

sel<=not sel after 10 ns;

a<="0000", "0001" after 10 ns, "0010" after 30 ns,
"0011" after 50 ns,"0100" after 70 ns, "0101" after
90 ns,"0110" after 110 ns, "0111" after 130
ns,"1000" after 150 ns;

b<="0001", "0010" after 10 ns, "0011" after 30
ns,"0100" after 50 ns, "0101" after 70 ns, "0110"
after 90 ns, "0111" after 110 ns,"1000" after 130 ns,
"1001" after 150 ns;

end test;

4. Conclusions

The reasons for the importance of being able to
model hardware in both VHDL and Verilog
have been discussed. VHDL and Verilog has
been extensively compared and contrasted in a
neutral manner and a tutorial has been posed as
a problem and solution to demonstrate the issues
above.

References

[1] Hyde, D.C. (1997) Handbook on Verilog
HDL, Bucknell University, Lewisburg, USA
[2] Nicula, D. (2000) Proiectarea Sistemelor
Digitale Implementate cu Dispozitive
Programabile, Bucuresti, Ed.Tehnica
[3] Pellerin D. (1998) An Introduction to HDLs
for Simulation and Synthesis, Protel Technology
Inc., Provo, USA
[4] Smith, D.J. (1996) VHDL & Verilog
Compared and Contrasted, 33rd Design
Automation Conference, VeriBest Incorporeted,
Huntsville, USA.
[5] Smith, M.J.S. (1998) ASICs… the course
based on ASICs… the book, ISBN 0-201-50022-
1, Addison Wesley Longman
[6]www.verilog.net
[7]ww.vhdl.org

6

