
THE INTEGRATION OF REAL DEVICE CAPABILITIES IN
DISTRIBUTED APPLICATIONS BASED ON OPC TEHNOLOGY

VASILE GAITAN(1), VALENTIN POPA(1), IOAN UNGUREAN(2), NICOLETA CRISTINA

GAITAN (1)
1.University “Stefan cel Mare” Suceava, 2.GENPRO 07 SRL Suceava

1.Str. Universitatii nr.13,RO-720229, 2.Bld.G. Enescu nr.38,RO-720253 Suceava
ROMANIA

Abstract— The aim of this paper is to present a simple yet powerful way of introducing new devices into a SCADA
application based on OPC technology. In order to accomplish this, the ELECTRONIC DEVICE DESCRIPTION
technology and Object Dictionary concept were used as a middleware between the SCADA application and the field
devices. A text-based language was used for describing the digital communication characteristics of intelligent field
instrumentation and equipment parameters – device status, diagnostic data, and configuration details – in an operating
system (OS) and human machine interface (HMI) neutral environment.

Key-Words: - EDS, OPC, SCADA, EDDL

1 Introduction

At this time a big diversity of measure and control
devices are used in industry: single-channel and multi-
channel indicators, paperless recorders, dedicated
devices, etc. All these devices can be grouped depending
on the communication protocol used for the data
transmissions over the industrial local networks
(MODBUS, ProfiBus, CANOpen, ASCII, etc). The
requests from the devices and the industrial systems
regarding to flexibility (the new devices or new
technology addition in an old system, the system
modernized without missing its basic functionality) and
production speed, increase from the viewpoint of
complexity and the cost.

All information which are transmitted by these
devices can be acquired on a PC with SCADA
application type (which includes OPC servers and
clients) [1][2][3][6][7]. In the application design process
the possibility of introduction new communication
protocols and new device types in the system without
application rebuild must be foreseen.

2 Object dictionary object

At the first version of SCADA application
developed inside of GenPro Company, we encountered
difficulties on the introduction new device types in the
system. Because of that reason, in the design process of
new SCADA application version we have foreseen the
elimination of these problems. This thing is quite
difficult to achieve due to the big number of devices and
communication protocols.

In the design process of the SCADA application we
want to find a way to describe devices so that the
addition of new devices into SCADA system is achieved
quick and easily. After studying more industrial
networks (Canopen [4], EthernetIP [5], ProfiBus[9] etc.)
the use of the object dictionaries concept was chosen.
Thus each device is considerate as an object collection,
each object contains more data members. The access to
the objects of a device is accomplished by means of the
object dictionary. Each device will have an object
dictionary, which helps the SCADA [6][7][8] system to
access the object of the device.
Devices are considered to have 3 parts [4]:

 The communication – this function is provided
by the communication objects and permits data
transportation throughout the network;

 Object dictionary – represents the description
of all data that can be transported throughout the
network;

 Application – contains the functionality of the
devices, with respect to interaction with the
industrial process environment.

The object dictionary can be seen as an interface
between the device application and the device
communication functions.

The Object Dictionary is organized as an input
(object) collection, looking as a table. Each entry in the
object dictionary can have up-to 256 sub-inputs. Each
input (object) has at least one sub-input and each input is
characterized by data type and value.
The objects from object dictionary can be divided in 2
categories [4]:

12th WSEAS International Conference on COMPUTERS, Heraklion, Greece, July 23-25, 2008

ISBN: 978-960-6766-85-5 148 ISSN: 1790-5109

mailto:gaitan@eed.usv.ro
mailto:valentin@eed.usv.ro

 PDO Object - Process Data Object – process
objects (digital input/output, analogue input
etc.).

 SDO Object - Service Data Objects (address, the
communication speed, the device parameters,
etc.).

Object dictionary differs depending on each device
types and is not stored on to device. For this reason, for
each device types that are integrated in systems a
description text file will be made, named EDS file. EDS
is an acronym from Electronic Data Sheet and represents
a text file which describes the object dictionary structure
for the devices from the industrial process and which
commands are used for data access for each object.
Therefore, each type of device is described by the EDS
file, and when it is introduced a new type of device only
the EDS file is written, it is not necessary to create
drivers for the devices from the local industrial
networks. The introduction of a new communication
protocol only involves the implementation of the
acquisition module for that protocol.

The interpretation of the EDS file is made by the
communication module - it reads the object dictionary
structure (the number of objects, the number of sub-
objects for each object, the type and the name for each
object and sub-object).

The acquisition modules interpret the EDS file in
order to read a minimal dictionary object structure (the
objects number, the sub-objects number for each object
and the type of each sub-object) and commands used for
the update of each object. This information is used to
update the objects and to transmit data read from devices
to the communication module.

3 Electronic Device Description file
 A text file with the “eds” extension, named
Electronic Data Sheet, will be defined for each device. In
this file there will be a description of the object
supported by the device and the network commands
which are used to interrogate the device in order to
update these objects.

EDS file has the following sections:
 FileInfo -section which contains the information

about file;
 DeviceInfo -section which contains the

information about the device;
 PdoObject -section which describes the PDO

objects;
 SdoObject -section which describes the SDO

objects;
 History -section which describes the method for

historic download;
 Communication -section which describes the

methods used for objects upload/download.

Fig.
1 Electronic device description file

3.1 FileInfo section
The EDS file contains information about the file,

information that is used for the file version check. This
information is stored in a section that is preceded by
“[FileInfo]” text.

The keywords used in this section are:
FileName -file name;
FileVersion -file version (Unsigned8);
FileRevision -file revision (Unsigned8);
Description -file description (maxim 255 chars);
CreationTime -creation time for EDS file (the format

is: hh:mm (AM|PM));
CreationDate - creation date for EDS file (the format

is: mm-dd-YYYY);
CreatedBy -the name for author of this file an a

description (maxim 255 chars);
ModificationTime -the time for the last modification of

this file (the format is: hh:mm
(AM|PM));

ModificationDate -the date for the last modification of
this file (the format is mm-dd-YYYY);

ModificatedBy -the authors and description of the
modification for this file (maxim 255
chars).

Example:

12th WSEAS International Conference on COMPUTERS, Heraklion, Greece, July 23-25, 2008

ISBN: 978-960-6766-85-5 149 ISSN: 1790-5109

[FileInfo]
FileName = IUM04.eds
FileVersion = 1
FileRevision = 2
Description = EDS for
Multi-channel Universal Indicator v4.0

 Example:

CreationTime = 9.45PM
CreationDate = 05-05-2007
CreatedBy= Ioan Ungurean
ModificationTime = 11:30PM
ModificationDate = 06-06-2007
ModificatedBy = Ioan Ungurean

3.2 DeviceInfo section

The EDS file contains particular information about
the device such as:

- manufacturer name;
- manufacturer ID;
- device name.
This information can be found in DeviveInfo

section. The keywords used in this section are:
VendorName - manufacturer name (maxim 255

chars);
VendorNumber - the unique ID for manufacturer

(Unsigned32);
ProductName - device name (maxim 255 chars);
ProductNumber - the unique ID for device

(Unsigned32);
RevisiontNumber - device revision (Unsigned32);

Example:
[DeviceInfo]
VendorName = SIEMENS
VendorNumber = 1
ProductName = Multichannel Universal Indicator
ProductNumber = 1

3.3 PdoObject section

In this section the PDO objects of a device are
defined. The keywords used for object description are:
ObjectName - object name;
AccesType - access type for object (can take the

following values: wo –write only, ro –
read only, rw - read-write) ;

DefaultValue - it is used in order to determine the
number of member for the object;

Description - the description for object member;
Type - the type for object member;
LowLimit - the minimal value for current member

(optional, it is used only for numeric
values);

HighLimit - the maximal value for current member
(optional, it is used only for numeric
values).

[PdoObject]
[2001]
ObjectName = ValueOfChanel1
AccesType = ro
[2001sub0]
Description = NumberOf SubInputs
DefaultValue = 3
[2001sub1]
Description = StateOfChanel1
Type = UNSIGNED8
LowLimit = 0
HighLimit = 1
[2001sub2]
Description = The value of chanel 1
Type = REAL32
[2001sub3
Description = The value of chanel 1’ counter
Type = REAL32

3.4 SdoObject section

In [SdoObject] section are defined the SDO objects
for device. The definitions for SDO objects are
identically with definition for PDO objects.

3.5 History section
The procedure for history download from device is

defined in the [History] section. If the device does not
support the history (data logger) facility, the [History]
section will not be present in EDS file. Here is the
description for the history downloading procedure of the
2000 object.

 [History]
[2000]
 [START_HIST]
 FROM ModBusRegisterAddress TO
ModBusRegisterAddress
 FROM ModBusRegisterAddress TO
ModBusRegisterAddress

[GET_INREG]
FROM ModBusRegisterAddress TO
ModBusRegisterAddress1

In [START_HIST] section the MODBUS registers
where is transmitted data and times for the history
download are defined. Also, in this section is defined the

12th WSEAS International Conference on COMPUTERS, Heraklion, Greece, July 23-25, 2008

ISBN: 978-960-6766-85-5 150 ISSN: 1790-5109

MODBUS register which is used to read the ID for the
fist record from historic. In section [GET_INREG] are
defined the MODBUS register which is used to read a
record from historic.
If there are more objects for which are achieved
historians (data logger and event logger), the procedure
for history download from a device and for these objects
will be defined.

3.6 Communication section

In order to update the defined object’s values, the
commands to be sent to the device and also the answers
for each command must be defined. Now, the data
acquisition mode used for ModBus protocol is described.
The [Communication] section contains this description.

[IndexObiect]: FROM ModBusRegisterAddress TO

ModBusRegisterAddress

The data interpretation mode must be described too,

when the acquisitioned data is interpreted. The data can
be directly written in the object’s memory buffer if it
didn’t need to be interpreted (The difference between
data representation modes must be taken into account).
This section is not necessary for CANOpen protocol.

As we can see in fig.2, OPC server is made of:
 OPC data server – which has implemented OPC

specification interfaces.
 Communication component – which manage

object dictionaries for each distinct device in
system (the data read from devices are stored in
a cache memory).

 Acquisition component – which reads data from
devices in the system.

The EDS file interpretation is made by:
 Communication component – to read the object

dictionary’s structure (the number of objects, the
number of sub objects belonging to an object,
the type of a sub-object, objects and sub-objects
name). This information is used to allocate
memory for storing the data that was read from a
device and also in creating the „Browse”
interface by the OPC server.

 Acquisition component – in order to read a few
sections of the objects dictionary (the number of
objects, the number of sub objects belonging to
an object, the type of a sub object), the
commands that are used to update the objects,
and to send the data read from a device to the
communication component.

Fi
Fig.2 EDS interpretation

4 A practical EDS file example

We can see in figure 3 and figure 4 a practical EDS
file example. If the „Intrări digitale” object initially has
one member, but if it necessary to expand its size to
eight members (as we can see in fig.3) the „[PdoObject]”
and „[Communication]” sections of the EDS file must be
modified. (as we can see in fig.4).

Fig.3 EDS file example

12th WSEAS International Conference on COMPUTERS, Heraklion, Greece, July 23-25, 2008

ISBN: 978-960-6766-85-5 151 ISSN: 1790-5109

Fig.4 EDS file example

5 Conclusion

By using the „Electronic Device Description
Language” technology a unitary way of describing
devices was achieved. This description is used by the
OPC server to determinate the features of each device. In
order to add a new type of device a new EDS file is
needed to be written and there is no need to write a new
profile (this is time saving).

Modifying commands for a device implies just
the editing of the EDS description file. The way of
describing the object dictionary structure does not
depend on the communication protocol (new protocols
can be easily added).

Acknowledgment
These researches were financed by ctr. no. 80

from 25.09.2007 (SMEDU) research grant.

References:
[1]Vasile GĂITAN, Cornel TURCU, Alexandru

GOLOCA, Renati POPA, An RFID and OPC
Technology Based Distributed System for Production
Control and Monitoring, Proceedings of the 1-st
RFID Eurasia Conference, 5-7.09.2007, Istambul,
Turkey, pg. 253-258, ISBN: 978-975-01566-0-1,
IEEE Catalog Number: 07EX1725, Digital Object
Identifier 10.1109/RFIDEURASIA.2007.4368133,
2007

[2] www.opcfoundation.org
[3] Frank Iwanitz, Jurgen Lange (2002), OPC

Fundamentals, Implementation, and Application 2nd
rev. Ed.

[4] Olaf Pfeiffer, Andrew Ayre, Christian Keydel,
(2003), Embedded Networking with CAN and
CANopen

[5] www.odva.org
[6] Gabriel DĂNILĂ and Alexandru GOLOCA,

“Creating a Transparent Interface With Field Bus
Networks Using OPC Technology”, vol. Distributed
Systems, December, 2006, Suceava, Romania,
ISSN/ISBN: 1842 – 68081

[7]Vasile Găitan. 2007. Using OPC technologies with
the Highly Functional Distributed System, Advances
in Electrical and Computer Engineering, Suceava,
Romania 2/2003, volume 3 (10), pp. 35-46

 [8]Vasile Gaitan, Cornel Turcu, Alexandru Goloca,
High Complexity Control Gates with Advanced
RFID Features for Production Process Monitoring,
The IEEE 22nd International Conference on
Advanced Information Networking and Applications,
25-28 march 2008, GinoWan, Okinawa, Japan,
ISBN: 978-0-7695-3096-3, INSPEC Accession
Number: 9912922, Digital Object Identifier:
10.1109/WAINA.2008.232, Date Published in Issue:
2008-04-03 16:08:54.0

[9] Ronaldo Hüsemann, Carlos Eduardo Pereira, A
multi-protocol real-time monitoring and validation
system for distributed fieldbus-based automation
applications, Control Engineering Practice, Volume
15, Issue 8, August 2007, Pages 955-968

12th WSEAS International Conference on COMPUTERS, Heraklion, Greece, July 23-25, 2008

ISBN: 978-960-6766-85-5 152 ISSN: 1790-5109

http://www.city.ginowan.okinawa.jp/2735/2410.html

