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Abstract:  A novel class of ISI-free pluses is presented and investigated. We propose and investigate a class of 

new Nyquist pulses that shows comparable or better ISI performance in the presence of sampling errors, as 

compared with some recently proposed pulses. 
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1.Introduction 

 

 Recently, improved Nyquist pulses that show 

smaller maximum distortion, more open receiver 

eye and a smaller symbol error rate in the 

presence of symbol timing error were reported 

[2,3 and 4]. They are defined by 
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where )( fG  is a function satisfying 1)0( =G . In 

[2,3 and 4] )( fG  was chosen to have a particular 

shape in the frequency interval BfB ≤≤− )1( α  

in order to transfer some energy to the high 

frequency spectral range. This results in a pulse 

that decays asymptotically as 2−t  as compared 

with 3−t  for the RC pulse, but with the advantage 

that the eye diagram is more open and, as a 

consequence, a better bit error rate is obtained. 

Two recent contributions showed that improved 

Nyquist pulses could be obtained with the 

flipped- )( fG technique, e.g. flipped-exponential 

[2] and flipped-hyperbolic secant or flipped-

inverse hyperbolic secant [3].  

The envelope of the impulse response decays as 
2−t  or 3−t  at best, since the functions and their 

flipped counterparts are continuous at 1=nf .  

The first derivative of the flipped-hyperbolic 

secant is continuous at 1=nf , which accounts 

for its steeper decay. The flipped-exponential 

technique uses fefG =)( and )/(2ln Bαβ = , while 

in [3] )(sec)( fhfG =  and )/()23ln( Bαγβ +==  

or )(sec
2

1
1)( fharc

B
fX

γα
−=  with 

Bα
β

2

1
= . 

 

2. A class of new Nyquist pulses 

  

We propose o class of new Nyquist pulses with 

piece-wise characteristics, that are defined for 

positive frequencies and even i as  
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The Nyquist filter characteristic is obtained from 

combining two types of characteristics with odd- 

symmetry. Here )( fG  is the flipped-exponential 

characteristic proposed in [2] and )( fH i is the 

family of parabolic, cubic and quartic ramps 

proposed in [5]. 
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For i odd they show odd symmetry around B and 

their definition is 
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For i even, the vestigial symmetry is obtained by 

choosing )( fH i  for the frequency interval 

BfB ≤≤− )1( α  and )(1 fH i− for )1( α+≤≤ BfB .  

The expressionss were derived imposing 

conitnuity conditions at )1( bBf −=  and 

)1( bBf +=  and a value of 0.5 at Bf = . 

This technique will be denoted in the sequel as 

double-ramp flipped- )( fG  and is illustrated in 

Fig.1. 

Figure 2 illustrates this class of new Nyquist 

filter characteristics for 4,3,2 andi = . 

Since they are more concave than the FE pulse, 

a decrease of the first side lobe in time domain is 

to be expected, as shown in Fig.3, where a time-

scaled replica of pulses is represented for 

25.0=α . The impulse responses )(tsi  are given 

in the Appendix A. 

Figure 2 A class of proposed frequency 

characteristics (positive frequencies) 

Figure 1 Proposed filter characteristic 

Figure 3 Impulse responses 25.0=α  
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Their behavior around L,4,3/ =Tt  is more flat, 

which accounts for their better properties 

regarding the error probability when sampled 

with a small time offset. 

A look at Fig.3 that further illustrates the decay 

of impulse responses reveals that the new pulse 

defined by (1) and (2) with 2=i  follows closely 

the FE pulse. 

Regarding the other pulses ( 43 andi = ), 

though the decrease of the first side lobe is more 

significant, the side lobes are significantly 

larger, which results in increased ISI. The 

behaviour is similar to that of FE pulse where 

increasing α  results in decreased error 

probability. 

 

3. Error probability 

 

When the receiver eye is sampled off center, as 

in practical receivers, timing error results in an 

increase of the average symbol error probability 

[2, 3, 14].   

This is calculated using the method of [13] for 

all proposed pulses and illustrated in Table I, 

together with those for FE pulse. 

 

3. Conclusions 

 

A new class of Nyquist pulses that show reduced 

maximum distortion, a more open receiver eye 

and decreased symbol error probability in the 

presence of timing error as compared with the 

FE pulse [2] with the same roll-off factor was 

introduced. Its transmission properties were 

thoroughly investigated and show that the pulses 

have practical importance. 
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