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Abstract 
 

The paper presents a behavioral design of a random-access memory (RAM) using 

Verilog as hardware description language. As IP part of a larger project, the 

memory design is described here using the concept of a “module” in a behavioral 

specification at the RTL level, trying to push the description to a more abstract 

approach. The operations that we performed on the memory, in this 

implementation, are: reading the information that is saved in a external file and 

writing in locations of the memory and then saving results in a external file. The 

RAM module was tested by using the stimulus module and the results were 

monitored to verify the design. 

 

 Keywords: Verilog, Very-large-scale integration, Random-Access Memory, 
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1 The background 

 
The behavioral description level in Hardware Description Languages is a modern 

concept usually associated with most abstract languages as VHDL or ABEL. The 

paper is demonstrating the ability of using behavioral description of a logic design, 
usually associated with abstract languages, in a less abstract environment as 

Verilog is. The language supports the early conceptual stages of design with its 



 
 

 

behavioral level of abstraction and the later implementation stages with its 

structural abstractions. The language includes hierarchical constructs, allowing the 

designer to control a description’s complexity. 
Since Verilog was originally designed in the winter of 1983/84 as a proprietary 

verification/simulation product, no behavioral tools were included. Later, several 

other proprietary analysis tools were developed around the language, including a 

fault simulator and a timing analyzer. More recently, Verilog has also provided the 

input specification for logic and behavioral synthesis tools. The Verilog language 

has been instrumental in providing consistency across these tools.  
The paper is presenting a behavioral Verilog implementation for a memory block 

included in a larger project. It can be reused as IP module in future development. 

 

2 Motivation  

 

Digital systems are highly complex. At their most detailed level, they may consist 

of millions of elements, as would be the case if we viewed a system as a collection 

of logic gates or pass transistors. From a more abstract viewpoint, these elements 
may be grouped into a handful of functional components such as cache memories, 

floating point units, signal processors, or real-time controllers. Hardware 

description languages have become a helpful tool to design systems with large 
number of elements and wide range of electronic and logical abstractions. 

The creative process of digital system design begins with a conceptual idea of a 

logical system to be built, a set of constraints that the final implementation must 

meet, and a set of primitive components from which to build the system. The 

design is typically divided into many smaller subparts and each subpart is further 

divided, until the whole design is specified in terms of known primitive 

components [5]. 

The Verilog language describes a digital system as a set of modules. Modules can 

represent bits of hardware ranging from simple gates to complete systems, e. g. a 

microprocessor [2]. 
A module represents a logical unit that can be described either by specifying its 

internal logical structure — for instance describing the actual logic gates it is 

comprised of, or by describing its behavior in a program-like manner — in this 
case focusing on what the module does. 

A behavioral model of a module is an abstraction of how the module works. The 

outputs of the module are described in relation to its inputs, but no effort is made to 

describe how the module is implemented in terms of structural logic gates. The 

behavioral model can be the starting point for synthesizing several alternate 

structural implementations of the behavior [6]. 

 



 
 

 

3 Random-Access Memory Implementation 

 

In this sub-design we will describe, using Verilog environment and its behavioral 

level, a RAM with four addresses lines and four bidirectional data lines, 24 × 4 bits.  

The figure 1 shows a logic diagram for a 16-word by 4-bit random access 
read/write memory. 

 
 

Figure 1. The diagram for RAM with 2
4
 × 4 bits 

 

The design is described using the concept of module. The module is conceptualized 

as consisting of two parts: the port declarations and the module body.  

The port declarations represent the external interface to the module. Inputs to the 

memory consist of four address lines, four data input lines, a write enable line, a 

chip select and a memory enable line. The four binary address inputs are decoded 

internally to select each of the 16 possible word locations.  
module RAM(Address,Clk,CS,ME,WE,Dout); 
input[3:0] Address; 
input Clk;   
input CS;    
input ME;   
input WE;  
inout[3:0] Dout;   
reg[3:0] memory[15:0]; // Memory block 16k x 4 
reg[3:0] Data_Read; 
assign Dout=Data_Read; 
… 
endmodule 
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The module body represents the internal description of the module - its behavior, in 

this case. The name of the module is just an arbitrary label invented by the user – 
RAM, and it does not correspond to a name pre-defined in a Verilog component 

library.  

The ports may correspond to a pin on an IC, an edge connector on a board, or any 

logical channel of communication with a block of hardware.  

Each port declaration includes the name of one or more ports and the direction that 

information is allowed to flow through the ports:  

• input – Address, Clock Signal (Clk), Chip Select (CS), Memory Enable 

(ME), Write Enable (WE); 

• inout – Bidirectional Port (Dout).  

 

Address Operation: Address inputs must be stable to the rising edge of memory 

enable input.  

Write Operation: Information present at the data inputs is written into the 

memory at the selected address by bringing write enable high. 

For write operation the data inputs can be: 

• read from a external file (“init.dat”); 

• equal with the address values; 

• random values; 

• all zero values; 

• unknown values. 
 

integer i; 
initial begin 
if(init=="file")  
      $readmemb("init.dat", memory); 
else begin 
if(init=="address") begin 
for(i=0;i<=15;i=i+1) 
 memory[i]=i; 
end 
else begin 
if(init=="random") begin 
for(i=0;i<=15;i=i+1) 
 memory[i]= $random; 
end 
else begin 
if(init=="zero") begin 
for(i=0;i<=15;i=i+1) 
 memory[i]=0; 
end 
else begin 
if(init=="x") begin 
for(i=0;i<=15;i=i+1) 



 
 

 

 memory[i]=4'bx; 
end 
else begin 

$display("Erorr: Incorrect parameter init=%s",init); 
      $stop; 
end   end end   end   end    end 

 

Read Operation: The information which was written into the memory is read out 

at the four outputs. This is accomplished by selecting the desired address and 

bringing memory enable high and write enable low. When the device is writing or 

disabled the outputs assumes a TRI-STATE (Hi-Z) condition. 
 
always@(posedge Clk) begin 
if(CS==1) begin 
if(WE==1) begin 
 Data_Read<=4'bz; 
     //Write in the memory 

memory[Address]<=Dout;  
     end 
else begin 
if(ME==1)  
     //Read from the memory 
 Data_Read<=memory[Address];  
end     end 
else Data_Read<=4'bz;  
end 

 
The basic essence of this behavioral model is the process. A process can be 

thought of as an independent thread of control, involving only one repeated action. 

The basic Verilog statement for describing a process is the always construct. 
 

4 Simulation  

 

The design described earlier is simulated for functionality and fully debugged. 

Translation of the debugged design into the corresponding hardware circuit (using 
FPGA or ASIC) is called synthesis. 

Testing is essential for the VLSI design process as with any hardware circuit. It has 

two dimensions to it – functional tests and timing tests. Testing or functional 

verification is carried out by setting up a “test bench” for the design. The test bench 

will have the design instantiated in it and will generate necessary test signals and 

apply them to the instantiated design. The outputs from the design are brought back 

to the test bench for further analysis. The input signal, waveforms and sequences 

required for testing are all to be decided in advance and the test bench configured 

based on the same [6]. 



 
 

 

 

4.1 The test bench 

 

Once the RAM design is completed, it must be tested for all its functional aspects. 

The functionality of the design block can be tested by applying stimulus and 

checking results. The test bench is done at the behavioral level. The constructs are 

flexible enough to allow all types of test signals to be generated. 

For the stimulus block we use a number of tasks for write and read in/from 

memory that facilitates control and flow of the testing process.  

Verilog tasks are as constructs analogous to subroutine in a software program and 

it allows for the behavioral description of a module to be broken into more-

manageable parts. A task is defined within a module and can be called as many 

times as desired within a procedural block.  
 
task Read; 

input[3:0] Address_task; 
begin 

Data_Write=4'bz;    
Address<=Address_task;  

//Control signals for read operation 
CS<=1'b1;  
WE<=1'b0; 
ME<=1'b1; 

      @(posedge Clk); 
      #5 $display("%tRead from the memory:Address=%d,Data=%h  

      H",$time, Address_task, Dout); 
end    endtask 
 
task Write; 

input[3:0] Address_task; 
input[3:0] Data_W; 

begin 
$display("%t Write in the memory: Address=%d, Data=%h  

   H",$time, Address_task, Data_W); 
Address<=Address_task;   

// The value who is written at the specified location 
Data_Write<=Data_W; 

//Control signals for write operation  
CS<=1'b1; 
WE<=1'b1; 
ME<=1'b1; 

      @(posedge Clk); 
end     endtask 

 



 
 

 

4.2 Test Vectors 

 

In this code fragment, the stimulus and response capture are going to be coded 

using a pair of initial blocks used for monitoring, generating waveforms (clock 

pulses) and processes which are executed once in a simulation. 

4.3 Instances 

 

A module provides a template from which we can create actual objects. When a 

module is invoked, Verilog creates a unique object from the template. Each object 

has its own name, variables, parameters and I/O interface. The process of creating 

objects from a module template is called instantiation, and the objects are called 

instances [7]. 

Each instance is an independent, concurrently active copy of a module. Each 

module instance consists of the name of the module being instanced (e.g. RAM), an 
instance name (unique to that instance within the current module – memory) and a 

port connection list.  

The module port connections can be given in order (positional mapping), or the 

ports can be explicitly named as they are connected (named mapping). Named 

mapping is usually preferred for long connection lists as it makes errors less likely 

[9].  
 
// instantiate the design block 

RAM memory(Address,Clk,CS,ME,WE,Dout); 
defparam memory.init="file"; 
/* "file": all locations are filled with the data stored in a 

external file named "init.dat" 

"address": all locations are filled with the address values 

"random": all locations are filled with the random values  

"zero": all locations are filled with the zero value 

"x": all locations are filled with the unknown values    */ 

initial begin 
@(posedge Clk); 
Display_Memory("results.dat"); 
Write(4'd10,4'b0001); 
Write(4'd11,4'b0010); 
Write(4'd12,4'b0011); 
Write(4'd13,4'b0100); 
Read(4'd10); 
Read(4'd11); 
Read(4'd12); 
Read(4'd13); 
Display_Memory("results.dat"); 
@(posedge Clk); 
$display("%t Finished Simulation", $time ); 
$stop;  end 



 
 

 

The initial block above does six controlling activities during the simulation run: 

• Initializes the memory with the information, using the parameter init; 

• Displays the initial content of the memory in a external file named 

“results.dat”; 

• Writes another information in the memory; 

• Reads the changed information; 

• Displays the content of the memory in “results.dat”; 

• Stops the simulation at the specified time. 
 

5 Results Analysis 
 

For the results analysis we described a Verilog task that reads data from the 

memory and displays the results in a external file named “results.dat”. 
 
task Diplay_Memory; 

input[0:100] file; 
integer k; 
integer file_id; 

begin 
file_id=$fopen(file); 
$display ("%t Read from the memory", $time); 
for(k=0;k<=15;k=k+1) begin 
$fdisplay(file_id, "Address=%d, Data=%h H", k, 

                memory. memory [k]); 
$display("Address=%d, Data=%h H", k, memory.memory[k]); 

end 
$fclose(file_id); 

end 
endtask 
 

File used to write in the 

memory (init.dat) 

1111 
1110 

1101 

1100 
1011 

1010 

1001 

1000 

0111 

0110 

0101 

0100 

File used to read from the memory 

(results.dat) 

Address= 0,    Data= f H 
Address = 1,   Data= e H 

Address = 2,   Data= d H 

Address = 3,   Data= c H 
Address = 4,   Data= b H 

Address = 5,   Data= a H 

Address = 6,   Data= 9 H 

Address = 7,   Data= 8 H 

Address = 8,   Data= 7 H 

Address = 9,   Data= 6 H 

Address = 10, Data= 1 H 

Address = 11, Data= 2 H 



 
 

 

0011 

0010 

0001 
0000 

Address =12,  Data= 3 H 

Address =13,  Data= 4 H 

Address =14,  Data= 1 H 
Address =15,  Data= 0 H 

 

Simulation results can alternately be viewed as waveforms. The code for the test 

bench is simulated using HDL simulator. The figure 2 shows how the Verilog tasks 

described to write and read in/from the memory, has created a waveform sequence 

for the RAM signals. 

 

Figure 2. Write and read operations 

 

6 Conclusion 

 

The behavioral model can be the starting point for synthesizing several alternate 

structural implementations of the behavior. Behavioral models are useful early in 

the design process. At this point, a designer is more concerned with simulating the 

system’s intended behavior to understand its gross performance characteristics 
with little regard to its final implementation. Later, structural models with accurate 

detail of the final implementation are substituted and re-simulated to demonstrate 

functional and timing correctness. In terms of the design process, the key point is 
that it is often useful to describe and simulate a module using a behavioral 

description before deciding on the module’s actual structural implementation. 

Simulation of the Verilog source before synthesis allows a direct form of testing 
the design and finding simple run-time bugs before being tested in hardware. To 

allow ease of simulation, the RAM was replaced with accurate timing model and 

file to represent their behavior and storage. Functionality could easily be tested by 

writing programs in byte-code and saved as a file to be automatically run by the 

simulation. Behavioral implementation of a RAM module demonstrates the 

Verilog environment possibility to host abstract descriptions and accordingly to be 

used for complex abstract designs.     
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