
9
th
 International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 1

Abstract — The primary purpose of this paper is to study

the field of Hardware Description Languages such as VHDL.

The study is significant for several reasons. First, the

utilization of Hardware Description Languages in real life

engineering applications will become more conventional.

Second, the study is significant due to the major implication

that programmable logic based microcontrollers can be

upgraded as the requirements of a system increase as shown

in the case of the counter. Third, it is demonstrated how the

utilization of VHDL benefits not only engineering

applications, but also plays an important role accelerating

the design of digital systems. VHDL were employed to

describe the models for a different sized counter. The

internal view of the device specified the functionality of the

counter using the concept of architecture, while the external

view specified the interface of the device through which it

communicated with the other models in its environment.

Index Terms—VHDL, Very high speed integrated circuit,

Very-large-scale integration, counter, entity, architecture.

I. INTRODUCTION

The growing sophistication of applications continually

pushes the design and manufacturing of integrated circuits

to new levels of complexity. Due to major advances in the

development of electronics and miniaturization, vendors

are capable of building and designing products with

increasingly greater functionality, higher performance,

lower cost, lower power consumption, and smaller

dimensions [2].

The electronics industry requires systems to be capable

of in-site reprogramming, where the upgrading task

depends more on software than on hardware. This

situation has fostered the need for adoption of modern

technologies in design and testing. There are now two

industry standard hardware description languages, VHDL

and Verilog. The complexity of ASIC and FPGA designs

has meant an increase in the number of specialist design

consultants with specific tools and with their own libraries

of macro and mega cells written in either VHDL or

Verilog [5].

Of the several existing methodologies, high-density

Programmable Logic Devices (PLDs) as well as the Very

High Speed Integrated Circuits (VHSIC) Hardware

Description Language (VHDL) and Verilog Hardware

Description Language are key elements in the evolution of

electronic devices. It was demonstrated how the utilization

of VHDL generates benefits not only for engineering

applications, but also playing an important role

accelerating the design of digital systems [2].

VHDL usage has risen rapidly since its inception and is

used by literally tens of thousands of engineers around the

globe to create sophisticated electronic products. VHDL is

a powerful language with numerous language constructs

that are capable of describing very complex behavior.

Learning all the features of VHDL are not at all a simple

task and the designer abilities and experiences still remain

an important issue [1].

The article is illustrating the implementation and

simulation of a VHDL logic design based on behavioral

functional description. A reusable HDL code for a

presetable up/down 4-bit counter is generated and

described in order to demonstrate the principle.

Simulation is used to validate the procedure.

II. SHORT OVERVIEW ON VHDL LANGUAGE

The VHSIC Hardware Description Language is an

industry standard language used to describe hardware

from the abstract to the concrete level. The concept of a

Hardware Description Language was born from the

necessity of bringing the worlds of hardware and software

back together again. Vendors wanted the design

descriptions to be computer readable and executable. This

was followed by the arrival of Very High Speed Integrated

Circuits (VHSIC) Hardware Description Language

(VHDL) [2]. Its roots are in the ADA language, as will be

seen by the overall structure of VHDL as well as other

VHDL statements.

VHDL is a hardware description language employed to

model a digital system or digital hardware device at many

levels of abstraction, ranging from the algorithmic level

down to the gate level. The complexity of the digital

system being modeled could vary from that of a simple

gate to a complete digital electronic system, or anything in

between. The digital system can also be described

hierarchically [2].

The VHDL language can also be described as a

combination of languages as: sequential language,

concurrent language, netlist language, waveform

generation language and timing specifications.

Therefore, VHDL has constructs that enable the user to

express the concurrent or sequential behavior of a digital

system with or without timing characteristics. It also

allows the modeling of systems as an interconnection of

components. Test waveforms can also be generated using

the same constructs. All the above constructs may also be

combined to provide a comprehensive description of the

system in a single model [3].

The Optimization of a Design using VHDL

Concepts
Iuliana CHIUCHISAN

Alin Dan POTORAC

"Stefan cel Mare" University of Suceava
str.Universitatii nr.13, RO-720229 Suceava

iuliap@eed.usv.ro

alinp@eed.usv.ro

9
th
 International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 2

III. TRANSLATION OF A CIRCUIT INTO A VHDL CODE

VHDL describes the behavior of an electronic circuit or

system, from which the physical circuit or system can then

be implemented [4].

The basic building blocks of VHDL design are the

entity declaration and the architecture body. A VHDL

entity specifies the name of the entity, the ports of the

entity, and entity-related information.

The next example is a design of a 4-bit loadable

up/down counter. A graphical schematic for a 4-bit

counter is depicted in Figure 1.

The entity describes a component’s connections to the

rest of the design. It specifies the number of ports, the

direction of the ports, and the type of the ports.

The entity counter contains a clock input port to clock

the counter, a load input port that allows the counter to be

synchronously loaded, a clear input port that

synchronously clears the counter, a up-down input port

that sets the counter to a up count or a down count, a

data_in input port that allows values to be loaded into the

counter’s cells, a output port terminal_count that detects

the end of the counter and a output port data_out that

presents the current value of the counter to the outside

world.

ENTITY counter_4bit IS

 PORT(
data_in: IN std_logic_vector(3

downto 0);

clock: IN std_logic;
load: IN std_logic;

clear: IN std_logic;

up_down: IN std_logic;

terminal_count: OUT std_logic;
data_out: OUT std_logic_vector (3

downto 0));

END counter_4bit;

VHDL allows the user to write the designs using

various styles of architecture. The architecture can contain

any combination of behavioral, structural or dataflow

styles to define an entity’s function. These styles allow

programmers to describe a design at different levels of

abstraction, from using algorithms to gate level primitives

[2].

The architecture describes the underlying functionality

of the entity and contains the statements that model the

behavior of the entity. The architecture is always related

to an entity and describes the behavior of that entity.

The architecture for the 4-bit loadable up/down counter

device described earlier would look like this:

ARCHITECTURE counter_4bit_arh OF

counter_4bit IS
SIGNAL
count:std_logic_vector(3 downto 0)

:="0000";
BEGIN

PROCESS (clock) BEGIN

 IF (clear = '0') THEN
 count <= "0000";

 ELSIF(load = '0') THEN

 count <= data_in;

 ELSE
 IF (clock'EVENT AND clock = '0')

AND(clock'LAST_VALUE = '1') THEN

 IF(up_down = '1') THEN
 count <= count + 1;

 END IF;
 IF(up_down = '0') THEN
 count <= count - 1;

 END IF;
END IF;

END IF;

 IF (count = "1111") THEN
 terminal_count <= '1';

 ELSE

 terminal_count <= '0';

 END IF;
data_out <= count;

END PROCESS;

END counter_4bit_arh;

The reason for the connection between the architecture

and the entity is that an entity can have multiple

architectures describing the behavior of the entity.

If the designer wants to use a different architecture that

has another description he can use or reuse the VHDL

configurations. Configurations are a primary design unit

used to bind component instances to entities. For

structural models, configurations can be thought of as the

parts list for the model. For component instances, the

configuration specifies for an entity which architecture to

be used for a specific instance.

The configuration can also be used to provide a very

fast substitution capability. Multiple architectures can

exist for a single entity. One architecture might be a

behavioral model for the entity, while another architecture

might be a structural model for the entity. The architecture

used in the description can be selected by specifying

which architecture to be included into the configuration,

by just recompiling it. After compilation, the simulated

model uses the specified architecture.

data_in

up_down

load

clock

clear

data_out

Figure 1. A 4-bit loadable up/down counter

terminal_cout

9
th
 International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 3

The default configuration specifies the configuration

name, the entity being configured and the architecture to

be used for the entity.

The two architectures of the entity counter specify two

different-sized counters that can be used for the entity.

The first architecture specifies an 8-bit up/down counter.

The second architecture specifies a 16-bit up/down

counter. The architectures specify a synchronous counter

with synchronous load and clear inputs. All operations for

the device occur with respect to the clock.

ENTITY counter IS

 PORT(
data_in : IN INTEGER;

clock : IN std_logic;

clear : IN std_logic;
load : IN std_logic;

up_down : IN std_logic;
terminal_count: OUT std_logic;
data_out : OUT INTEGER);

END counter;

ARCHITECTURE counter_8bit_arh OF

counter IS
BEGIN

PROCESS(clock)

 VARIABLE count : INTEGER := 0;

 BEGIN
 IF (clear = '0') THEN

 count := 0;

 ELSIF (load = '0') THEN
 count := data_in;

 ELSE
 IF (clock'EVENT AND clock = '1')
AND(clock'LAST_VALUE = '0') THEN

 IF (up_down = '1') THEN
 IF (count = 255)THEN

 count:=0;

 ELSE
 count := count + 1;

 END IF; END IF;

 IF(up_down = '0')THEN

 IF (count = 0)THEN
 count:=255;

 ELSE

 count := count - 1;
 END IF; END IF;

 END IF; END IF;
 IF (count = 255) THEN

 terminal_count <= '1';

 ELSE
 terminal_count <= '0';

 END IF;

data_out <= count;
END PROCESS;

END counter_8bit_arh;

ARCHITECTURE counter_64k_arh OF

counter IS

BEGIN
PROCESS(clock)

VARIABLE count : INTEGER := 0;
BEGIN

 IF (clear = '0') THEN
 count := 0;

 ELSIF (load = '0') THEN

 count := data_in;
 ELSE

 IF (clock'EVENT AND clock = '1')

AND(clock'LAST_VALUE = '0') THEN

 IF (up_down = '1') THEN
 IF (count = 65535)THEN

 count:=0;

 ELSE
 count := count + 1;

 END IF; END IF;
 IF(up_down = '0')THEN

 IF (count = 0)THEN

 count:=65535;
 ELSE

 count := count - 1;

 END IF; END IF;

 END IF; END IF;
 IF (count = 65535) THEN

 terminal_count <= '1';

 ELSE
 terminal_count <= '0';

 END IF;
data_out <= count;

END PROCESS;

END counter_64k_arh;

Each of the two configurations above specifies a

different architecture for the entity counter. Below is an

example of two configurations illustrated as

small_counter and big_counter:

CONFIGURATION small_counter OF counter
IS

FOR counter_8bit_arh

END FOR;
END small_counter;

CONFIGURATION big_counter OF counter IS

FOR counter_64k_arh

END FOR;
END big_counter;

This example shows how two different architectures for

the same counter entity can be configured using two

default configurations. The entity for the counter does not

specify any bit word width for the data to be loaded into

the counter or output data generated by the counter. The

data type for the input and output data is an integer. With

a data type of integer, multiple types of counters can be

supported up to the integer representation limit of the

computer hosting the VHDL simulator.

The next description example contains a package that

defines an 8-bit binary word range that causes the

synthesis tools to generate an 8-bit counter. Changing the

size of the range causes the synthesis tools to generate

9
th
 International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 4

different-sized counters.

PACKAGE count_types IS

SUBTYPE bit8 is INTEGER RANGE 0 to 255;
END count_types;

ENTITY counter IS
 PORT(

data_in: IN bit8;

clock: IN std_logic;
load: IN std_logic;

clear: IN std_logic;

up_down: IN std_logic;

terminal_count: OUT std_logic;
data_out: OUT bit8);

END counter;

A. The test-bench

A simulator needs two inputs: the description of the

design as basics and stimulus to drive the simulation.

Sometimes designs are self-stimulating and do not need

any external stimulus, but in most cases, VHDL designers

use a VHDL test-bench of one kind or another to drive the

design being tested. The top-level design description

instantiates two components: the first being the design

under test (DUT) and the second the stimulus driver.

These components are connected with signals that

represent the external environment of the DUT. The top

level of the design does not contain any external ports, just

internal signals that connect the two instantiated

components. When the designer makes a small change to

fix an error, the change can be tested to make sure that it

did not affect other parts of the design [1].

The test-bench encapsulates the stimulus driver, known

good results and DUT and includes internal signals to

make the proper connections. The stimulus values drives

inputs into the DUT. The DUT responds to the input

signals and produces output results. Finally, a compare

function within the test-bench compares the results from

the DUT against those known good results and reports any

discrepancies. That is the basic function of a test-bench,

but there are a number of methods of writing a test-bench

and each method has advantages and disadvantages [1].

The following are the most common test-bench types:

• Stimulus only — contains only the stimulus

driver and DUT; does not contain any results

verification.

• Full test-bench — Contains stimulus driver,

known good results, and results comparison.

• Simulator specific — Test-bench is written in a

simulator-specific format.

• Hybrid test-bench — Combines techniques from

more than one test-bench style.

• Fast test-bench — Test-bench written to get

ultimate speed from simulation.

The advantages and disadvantages of each kind of test-

bench type are shown in Table 1.

Table 1.

 Speed Flexibility Portability

Stimulus only Slow High High

Full testbench Slow High High

Simulator

specific

Medium High Low

Hybrid

testbench

Medium Medium High

Fast testbench Extremely

fast

Low High

B. VHDL Simulation

The VHDL description of the counter is simulated with

a standard VHDL simulator to verify that the description

is correct.

We decide to use a fast test-bench that is optimized for

speed and typically does not limit the speed of the

simulation. The fast test-bench looks similar to the other

test-bench styles consisting in a top-level entity that

instantiates a DUT and a process that generates the

stimulus. What’s different is the fact that instead of

reading the stimulus vectors from a file, the vectors are

compiled into the test-bench model.

The advantages of the fast test-bench are related with

the fact that it is executed extremely fast and doesn’t

suffer due to the operating system (file overheads are

included when reading a file). A disadvantage is that the

compiled model can get very large if the number of

vectors is large, making compiling time longer and

simulator memory usage excessive. Another disadvantage

of the fast test-bench is that the model is not easily

exchanged between simulations to be run. Changing the

test-bench requires a recompilation step. Therefore, the

fast test-bench is most useful for models that need fast

vector inputs to be applied so that the vectors can be run

in a small or medium-sized loop where those vectors are

applied again and again.

C. Results of Simulation

The result for the entity counter_4bit is shown in Figure

2. For demonstration purposes the input clock always

shifts values every 5 ns. The load signal is ‘0’ between 0

time to 10 ns and allows the counter to be loaded with

data_in value and to count up. The clear signal remains at

‘1’ except at the interval from 40 ns to 45 ns. This means

that the output data_out will restart counting down from

‘15’ at 55 ns time.

Figure 2. Simulation results for the entity counter_4bit

Figures 3 and 4 shows the simulation results obtained

for the configurations small_counter and big_counter for

the entity counter.

Figure 3. Simulation results for the configuration small_counter

Figure 4. Simulation results for the configuration big_counter

9
th
 International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 6

I. CONCLUSION

A fundamental motivation to use VHDL is that VHDL

is a standard, technology/vendor independent language,

and is therefore portable and reusable. The two main

immediate applications of VHDL are in the field of

Programmable Logic Devices (including CPLDs –

Complex Programmable Logic Devices and FPGAs –

Field Programmable Gate Arrays) and in the field of

ASICs (Application Specific Integrated Circuits). Once

the VHDL code has been written, it can be used either to

implement the circuit in a programmable device (from

Altera, Xilinx, Atmel, etc.) or can be submitted to a

foundry for fabrication of an ASIC chip. Currently, many

complex commercial chips are designed using such an

approach.

REFERENCES

[1] Perry, D. L. - “VHDL Programming by Example”, 4th edition, Mc-

Grow Hill, USA, 2002

[2] Wunnava, S. - “Tutorial on VHDL and Verilog applications”,

LACCEI, 2004

[3] Skahill, K. - “VHDL for Programmable Logic”, 1st edition,

Addison-Wesley, 1996

[4] Volnei, A. Pedroni - “Circuit Design with VHDL”, MIT Press,

2004

[5] Patentariu, I., Potorac, A. D. - „Hardware Description Languages,

A Comparative Approach”, Advances in Electrical and Computer
Engineering, Faculty of Electrical Engineering, Ştefan cel Mare

University of Suceava, pp 303-308, 2003

