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Abstract — The primary purpose of this paper is to study 

the field of Hardware Description Languages such as VHDL. 

The study is significant for several reasons. First, the 

utilization of Hardware Description Languages in real life 

engineering applications will become more conventional. 

Second, the study is significant due to the major implication 

that programmable logic based microcontrollers can be 

upgraded as the requirements of a system increase as shown 

in the case of the counter. Third, it is demonstrated how the 

utilization of VHDL benefits not only engineering 

applications, but also plays an important role accelerating 

the design of digital systems. VHDL were employed to 

describe the models for a different sized counter. The 

internal view of the device specified the functionality of the 

counter using the concept of architecture, while the external 

view specified the interface of the device through which it 

communicated with the other models in its environment. 

 

Index Terms—VHDL, Very high speed integrated circuit, 

Very-large-scale integration, counter, entity, architecture. 

I. INTRODUCTION 

The growing sophistication of applications continually 

pushes the design and manufacturing of integrated circuits 

to new levels of complexity. Due to major advances in the 

development of electronics and miniaturization, vendors 

are capable of building and designing products with 

increasingly greater functionality, higher performance, 

lower cost, lower power consumption, and smaller 

dimensions [2].  

The electronics industry requires systems to be capable 

of in-site reprogramming, where the upgrading task 

depends more on software than on hardware. This 

situation has fostered the need for adoption of modern 

technologies in design and testing. There are now two 

industry standard hardware description languages, VHDL 

and Verilog. The complexity of ASIC and FPGA designs 

has meant an increase in the number of specialist design 

consultants with specific tools and with their own libraries 

of macro and mega cells written in either VHDL or 

Verilog [5]. 

Of the several existing methodologies, high-density 

Programmable Logic Devices (PLDs) as well as the Very 

High Speed Integrated Circuits (VHSIC) Hardware 

Description Language (VHDL) and Verilog Hardware 

Description Language are key elements in the evolution of 

electronic devices. It was demonstrated how the utilization 

of VHDL generates benefits not only for engineering 

applications, but also playing an important role 

accelerating the design of digital systems [2]. 

VHDL usage has risen rapidly since its inception and is 

used by literally tens of thousands of engineers around the 

globe to create sophisticated electronic products. VHDL is 

a powerful language with numerous language constructs 

that are capable of describing very complex behavior. 

Learning all the features of VHDL are not at all a simple 

task and the designer abilities and experiences still remain 

an important issue [1]. 

The article is illustrating the implementation and 

simulation of a VHDL logic design based on behavioral 

functional description. A reusable HDL code for a 

presetable up/down 4-bit counter is generated and 

described in order to demonstrate the principle. 

Simulation is used to validate the procedure.  

II. SHORT OVERVIEW ON VHDL LANGUAGE 

The VHSIC Hardware Description Language is an 

industry standard language used to describe hardware 

from the abstract to the concrete level. The concept of a 

Hardware Description Language was born from the 

necessity of bringing the worlds of hardware and software 

back together again. Vendors wanted the design 

descriptions to be computer readable and executable. This 

was followed by the arrival of Very High Speed Integrated 

Circuits (VHSIC) Hardware Description Language 

(VHDL) [2]. Its roots are in the ADA language, as will be 

seen by the overall structure of VHDL as well as other 

VHDL statements. 

VHDL is a hardware description language employed to 

model a digital system or digital hardware device at many 

levels of abstraction, ranging from the algorithmic level 

down to the gate level. The complexity of the digital 

system being modeled could vary from that of a simple 

gate to a complete digital electronic system, or anything in 

between. The digital system can also be described 

hierarchically [2].  

The VHDL language can also be described as a 

combination of languages as: sequential language, 

concurrent language, netlist language, waveform 

generation language and timing specifications. 

Therefore, VHDL has constructs that enable the user to 

express the concurrent or sequential behavior of a digital 

system with or without timing characteristics. It also 

allows the modeling of systems as an interconnection of 

components. Test waveforms can also be generated using 

the same constructs. All the above constructs may also be 

combined to provide a comprehensive description of the 

system in a single model [3].  
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III. TRANSLATION OF A CIRCUIT  INTO A VHDL CODE 

VHDL describes the behavior of an electronic circuit or 

system, from which the physical circuit or system can then 

be implemented [4]. 

The basic building blocks of VHDL design are the 

entity declaration and the architecture body. A VHDL 

entity specifies the name of the entity, the ports of the 

entity, and entity-related information.  

The next example is a design of a 4-bit loadable 

up/down counter. A graphical schematic for a 4-bit 

counter is depicted in Figure 1. 

 

 
The entity describes a component’s connections to the 

rest of the design. It specifies the number of ports, the 

direction of the ports, and the type of the ports. 

The entity counter contains a clock input port to clock 

the counter, a load input port that allows the counter to be 

synchronously loaded, a clear input port that 

synchronously clears the counter, a up-down input port 

that sets the counter to a up count or a down count, a 

data_in input port that allows values to be loaded into the 

counter’s cells, a output port terminal_count that detects 

the end of the counter and a output port data_out that 

presents the current value of the counter to the outside 

world. 

ENTITY counter_4bit IS 

    PORT( 
data_in: IN std_logic_vector(3 

downto 0); 

clock: IN std_logic; 
load: IN std_logic; 

clear: IN std_logic; 

up_down: IN std_logic; 

terminal_count: OUT   std_logic; 
data_out: OUT std_logic_vector (3 

downto 0)); 

END counter_4bit; 

 

VHDL allows the user to write the designs using 

various styles of architecture. The architecture can contain 

any combination of behavioral, structural or dataflow 

styles to define an entity’s function. These styles allow 

programmers to describe a design at different levels of 

abstraction, from using algorithms to gate level primitives 

[2]. 

The architecture describes the underlying functionality 

of the entity and contains the statements that model the 

behavior of the entity. The architecture is always related 

to an entity and describes the behavior of that entity.  

The architecture for the 4-bit loadable up/down counter 

device described earlier would look like this: 

 
ARCHITECTURE counter_4bit_arh OF 

counter_4bit IS 
SIGNAL  
count:std_logic_vector(3 downto 0)  

:="0000"; 
BEGIN 

PROCESS (clock) BEGIN 

    IF (clear = '0') THEN       
  count <= "0000"; 

    ELSIF(load = '0') THEN      

       count <= data_in; 

    ELSE  
    IF (clock'EVENT AND clock = '0') 

AND(clock'LAST_VALUE = '1') THEN  

    IF(up_down = '1') THEN  
       count <= count + 1;   

    END IF; 
    IF(up_down = '0') THEN 
       count <= count - 1;   

    END IF; 
END IF; 

END IF; 

    IF (count = "1111") THEN  
       terminal_count <= '1'; 

    ELSE  

  terminal_count <= '0'; 

    END IF; 
data_out <= count;      

END PROCESS; 

END counter_4bit_arh; 

 

The reason for the connection between the architecture 

and the entity is that an entity can have multiple 

architectures describing the behavior of the entity.  

If the designer wants to use a different architecture that 

has another description he can use or reuse the VHDL 

configurations. Configurations are a primary design unit 

used to bind component instances to entities. For 

structural models, configurations can be thought of as the 

parts list for the model. For component instances, the 

configuration specifies for an entity which architecture to 

be used for a specific instance. 

The configuration can also be used to provide a very 

fast substitution capability. Multiple architectures can 

exist for a single entity. One architecture might be a 

behavioral model for the entity, while another architecture 

might be a structural model for the entity. The architecture 

used in the description can be selected by specifying 

which architecture to be included into the configuration, 

by just recompiling it. After compilation, the simulated 

model uses the specified architecture. 

data_in 

up_down 

load 

clock 

clear 

data_out 

Figure 1. A 4-bit loadable up/down counter 

terminal_cout 
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The default configuration specifies the configuration 

name, the entity being configured and the architecture to 

be used for the entity. 

The two architectures of the entity counter specify two 

different-sized counters that can be used for the entity. 

The first architecture specifies an 8-bit up/down counter. 

The second architecture specifies a 16-bit up/down 

counter. The architectures specify a synchronous counter 

with synchronous load and clear inputs. All operations for 

the device occur with respect to the clock. 

ENTITY counter IS 

    PORT( 
data_in : IN INTEGER; 

clock : IN std_logic; 

clear : IN std_logic; 
load : IN std_logic; 

up_down : IN std_logic;  
terminal_count: OUT std_logic; 
data_out : OUT INTEGER); 

END counter; 
 

ARCHITECTURE counter_8bit_arh OF 

counter IS 
BEGIN 

PROCESS(clock) 

    VARIABLE count : INTEGER := 0; 

    BEGIN 
    IF (clear = '0') THEN 

       count := 0; 

    ELSIF (load = '0') THEN 
       count := data_in; 

    ELSE 
    IF (clock'EVENT AND clock = '1') 
AND(clock'LAST_VALUE = '0') THEN 

    IF (up_down = '1') THEN 
    IF (count = 255)THEN 

       count:=0; 

    ELSE 
       count := count + 1; 

    END IF;   END IF; 

    IF(up_down = '0')THEN 

    IF (count = 0)THEN 
       count:=255; 

    ELSE 

       count := count - 1; 
    END IF;   END IF; 

    END IF;   END IF; 
    IF (count = 255) THEN  

  terminal_count <= '1'; 

    ELSE  
       terminal_count <= '0'; 

    END IF; 

data_out <= count; 
END PROCESS; 

END counter_8bit_arh; 

ARCHITECTURE counter_64k_arh OF 

counter IS 

BEGIN 
PROCESS(clock) 

VARIABLE count : INTEGER := 0; 
BEGIN 

    IF (clear = '0') THEN 
       count := 0; 

    ELSIF (load = '0') THEN 

       count := data_in; 
    ELSE 

    IF (clock'EVENT AND clock = '1') 

AND(clock'LAST_VALUE = '0') THEN 

    IF (up_down = '1') THEN 
    IF (count = 65535)THEN 

       count:=0; 

    ELSE 
       count := count + 1; 

    END IF;   END IF; 
    IF(up_down = '0')THEN 

    IF (count = 0)THEN 

       count:=65535; 
    ELSE 

       count := count - 1; 

    END IF;   END IF; 

    END IF;   END IF; 
    IF (count = 65535) THEN   

       terminal_count <= '1'; 

    ELSE  
       terminal_count <= '0'; 

    END IF; 
data_out <= count; 

END PROCESS; 

END counter_64k_arh; 

 

Each of the two configurations above specifies a 

different architecture for the entity counter. Below is an 

example of two configurations illustrated as 

small_counter and  big_counter: 

 

CONFIGURATION small_counter OF counter 
IS 

FOR counter_8bit_arh 

END FOR; 
END small_counter; 

CONFIGURATION big_counter OF counter IS 

FOR counter_64k_arh 

END FOR; 
END big_counter; 

 

This example shows how two different architectures for 

the same counter entity can be configured using two 

default configurations. The entity for the counter does not 

specify any bit word width for the data to be loaded into 

the counter or output data generated by the counter. The 

data type for the input and output data is an integer. With 

a data type of integer, multiple types of counters can be 

supported up to the integer representation limit of the 

computer hosting the VHDL simulator. 

The next description example contains a package that 

defines an 8-bit binary word range that causes the 

synthesis tools to generate an 8-bit counter. Changing the 

size of the range causes the synthesis tools to generate 
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different-sized counters. 

 
PACKAGE count_types IS 

SUBTYPE bit8 is INTEGER RANGE 0 to 255; 
END count_types; 
 

ENTITY counter IS 
    PORT( 

data_in: IN bit8; 

clock: IN std_logic; 
load: IN std_logic; 

clear: IN std_logic; 

up_down: IN std_logic; 

terminal_count: OUT   std_logic; 
data_out: OUT bit8); 

END counter; 

 

A. The test-bench 

A simulator needs two inputs: the description of the 

design as basics and stimulus to drive the simulation. 

Sometimes designs are self-stimulating and do not need 

any external stimulus, but in most cases, VHDL designers 

use a VHDL test-bench of one kind or another to drive the 

design being tested. The top-level design description 

instantiates two components: the first being the design 

under test (DUT) and the second the stimulus driver. 

These components are connected with signals that 

represent the external environment of the DUT. The top 

level of the design does not contain any external ports, just 

internal signals that connect the two instantiated 

components. When the designer makes a small change to 

fix an error, the change can be tested to make sure that it 

did not affect other parts of the design [1].  

The test-bench encapsulates the stimulus driver, known 

good results and DUT and includes internal signals to 

make the proper connections. The stimulus values drives 

inputs into the DUT. The DUT responds to the input 

signals and produces output results. Finally, a compare 

function within the test-bench compares the results from 

the DUT against those known good results and reports any 

discrepancies. That is the basic function of a test-bench, 

but there are a number of methods of writing a test-bench 

and each method has advantages and disadvantages [1]. 

The following are the most common test-bench types: 

• Stimulus only — contains only the stimulus 

driver and DUT; does not contain any results 

verification. 

• Full test-bench — Contains stimulus driver, 

known good results, and results comparison. 

• Simulator specific — Test-bench is written in a 

simulator-specific format. 

• Hybrid test-bench — Combines techniques from 

more than one test-bench style. 

• Fast test-bench — Test-bench written to get 

ultimate speed from simulation. 

 

The advantages and disadvantages of each kind of test-

bench type are shown in Table 1. 

 

Table 1. 

 Speed Flexibility Portability 

Stimulus only Slow High High 

Full testbench Slow High High 

Simulator 

specific 

Medium High Low 

Hybrid 

testbench 

Medium Medium High 

Fast testbench Extremely 

fast 

Low High 

 

B. VHDL Simulation 

The VHDL description of the counter is simulated with 

a standard VHDL simulator to verify that the description 

is correct. 

We decide to use a fast test-bench that is optimized for 

speed and typically does not limit the speed of the 

simulation. The fast test-bench looks similar to the other 

test-bench styles consisting in a top-level entity that 

instantiates a DUT and a process that generates the 

stimulus. What’s different is the fact that instead of 

reading the stimulus vectors from a file, the vectors are 

compiled into the test-bench model. 

The advantages of the fast test-bench are related with 

the fact that it is executed extremely fast and doesn’t 

suffer due to the operating system (file overheads are 

included when reading a file). A disadvantage is that the 

compiled model can get very large if the number of 

vectors is large, making compiling time longer and 

simulator memory usage excessive. Another disadvantage 

of the fast test-bench is that the model is not easily 

exchanged between simulations to be run. Changing the 

test-bench requires a recompilation step. Therefore, the 

fast test-bench is most useful for models that need fast 

vector inputs to be applied so that the vectors can be run 

in a small or medium-sized loop where those vectors are 

applied again and again. 

 

C. Results of Simulation 

The result for the entity counter_4bit is shown in Figure 

2. For demonstration purposes the input clock always 

shifts values every 5 ns. The load signal is ‘0’ between 0 

time to 10 ns and allows the counter to be loaded with 

data_in value and to count up. The clear signal remains at 

‘1’ except at the interval from 40 ns to 45 ns. This means 

that the output data_out will restart counting down from 

‘15’ at 55 ns time. 



 
Figure 2. Simulation results for the entity counter_4bit 

 

Figures 3 and 4 shows the simulation results obtained 

for the configurations small_counter and big_counter for 

the entity counter. 

 

 

 
Figure 3. Simulation results for the configuration small_counter 

 

 
Figure 4. Simulation results for the configuration big_counter 
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I. CONCLUSION 

A fundamental motivation to use VHDL is that VHDL 

is a standard, technology/vendor independent language, 

and is therefore portable and reusable. The two main 

immediate applications of VHDL are in the field of 

Programmable Logic Devices (including CPLDs – 

Complex Programmable Logic Devices and FPGAs – 

Field Programmable Gate Arrays) and in the field of 

ASICs (Application Specific Integrated Circuits). Once 

the VHDL code has been written, it can be used either to 

implement the circuit in a programmable device (from 

Altera, Xilinx, Atmel, etc.) or can be submitted to a 

foundry for fabrication of an ASIC chip. Currently, many 

complex commercial chips are designed using such an 

approach. 
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