
Scheduling Sequential Processes in Tree Networks 

 
Călin Ciufudean Constantin Filote  Adrian Graur   George Mahalu 
calin@eed.usv.ro     filote@eed.usv.ro adriang@eed.usv.ro mahalu@ed.usv.ro 

 

University “Ştefan cel Mare” of Suceava, Faculty of Electrical Engineering 

9 University Str., Suceava, RO-720225, Romania 

 

 

 

A b s t r a c t – In this paper we focus on the problem of scheduling time-critical data flow over a 

measuring tree network. We assume that data are operated in discrete time and their arrival and 

deadline processes are arbitrary. Our goal is to determine a policy which transmits data with 

minimum extension time at every node (every link) in a tree network. The models existing in the 

literature do not consider simultaneous performance of various hardware components of a complex 

system. When a hardware component of the system fails, the system reconfiguration is often less 

than perfect. On this assumption we introduce an algorithm to model the availability of measuring 

systems with colored Petri nets (CPN). Regarding the fact that the availability of a measuring cell i 

(or branch in the network) is calculated with Markov chains, we model our system with stochastic 

CPN. The utility of our approach in alleviating the computational burden of measuring systems 

availability is illustrated via a Markov chain structure. 

Key-words: Tree networks, optimal scheduling, colored Petri nets, Markov chains. 

 

1. Introduction 

 

Many systems, and particularly communication networks, are formed by a collection of agents which 

cooperate using a production schema and compete for resources. The cooperation corresponds to the 

process plan: each agent in the system transforms some items that are consumed by others in some 

prescribed fashion to obtain the final products. Competition is introduced by technical or economical 

restrictions: the different agents share some scarce resources (sensors, switches, communication 

lines) to perform their tasks. There are several applications of packet switched communication 

networks where a high variability in packet delivery delay is undesirable. In packetized voice 

communication systems for example, the quality of signal degrades when the end-to-end delay 

exceeds a prescribed threshold. In networks carrying control information, a packet incurring a delay 

larger than the time within which the system state changes becomes useless for control purposes . An 

important problem in these systems concerns the design of network controls so as to minimize the 

number of packets reaching the destination after a prescribed threshold. The complex measurement 

systems include a set of sensors, transducers, multiple part routing due to alternate sequencing in the 

processing of data. When a device, sensor, transducer or any other hardware component of the 

system fails, the system reconfiguration is often less than perfect. The notion of imperfection is 

called imperfect coverage, and it is defined as probability c that the system successfully reconfigures 

given that component faults occur. The imperfect repair of a component implies that when the repair 

of the failed component is completed it is not “as good as new”. A dependability for evaluation of 

performance of a manufacturing system is presented. The meaning of dependability here is twofold 

[3-4]: 

- System availability and reliability 

- Dependence of the performance of measuring system on the performance of its individual 

physical subsystems and components. 

The model considers the task-based availability of a measuring system, where the system is 

considered operational as long as its task requirements are satisfied, that means that the system data 

processing capacity exceeds a given lower bound. In this paper we model the measuring system with 

stochastic colored Petri nets. In our assumption the availability of a measuring cell i (i = 1,2,…,n, 

where n is the total number of part type cells in the measuring system) is calculated with a Markov 

chain which includes the failure rates, repair rates, and coverability of the respective devices in the 

measuring cell i. The color domains of transitions that load cell i include colors that result in a value 

between 0 and 1, and the biggest value designates the cell which will transmit data to the root node of 

the tree network of the measuring system. From the point of view of queuing theory, networks with 

tree topology are a first step toward an effort to generalize results for single queues. In section 2, the 

model of the tree network is described, in section 3 is shown the model of a measuring system, and 

the Markov model of a measuring cell is given in section 4. 



2. Transmission scheduling in a tree network 
 

Suppose that data measured by sensors arrive at any of the nodes of a tree network with root node 

D, with T links between each pair of directly connected nodes, and are designated for node D. 

There is a deadline and an extinction time (arrival time + deadline) associated with each message, 

and a message has to reach the destination before its extinction time expires. If the extinction time 

of a message expires while it is waiting for the repairing of a damaged device in the system, or is 

being transmitted to an intermediate node, then the message is considered lost and the system 

reconfigures itself taking into account another message from a downstream node. We wish to find 

a policy for scheduling the transmission of messages that minimizes the total number of lost 

messages. We assume that in the tree network the distance (in number of hops) between each node 

and the root node is known. We also assume that the system is discrete (e.g., is slotted). At slot t 

the optimal policy would never transmit a message with extinction time strictly less than t+k at a 

node that is k hops away from D, as this message will be lost. A message at a node k which hops 

away from D is eligible [4] for transmission at time t if its extinction time is at least t+k. In [5] it is 

shown that the policy which transmits the eligible messages with the shortest extinction time at 

every node minimizes the number of lost messages over any time interval. This is referred as the 

Shortest Time to Extinction (STE) policy. In [6] it is proven the following theorem in order to 

complete the trivial implementation of the STE policy in a distributed manner, once a node knows 

its distance from the root node D. 

Theorem: For every scheduling policy p 

 

TSTE(t) ≤ TP(t), ∀ t ≥ 0.                (1) 

 

In the given theorem, it is supposed that the number of links between any two directly connected 

nodes of the network is identical. The next example shows the necessity of this requirement. 

Consider the tandem network of Fig.1 [6]. 

 

 

 

 

 

Fig.1 A tandem network 

 

Initially, there are two messages with extinction times two and three units at node A. Messages 

arrive at the system only in slot [0,1); one to node A with extinction time three units and two to 

node B, each with extinction time two units. Let p be the policy which transmits the message with 

extinction time three units at node A at time zero and schedules according to the STE policy at all 

other times. It is proven in [6] that p loses one few message than STE. 

 

 

3. Modeling the measuring schedule 

We will assume that the reader is familiar with colored Petri net theory and their application to 

manufacturing systems or we refer the reader to [2]. Each part entering the system is represented by a 

token. The color of the token associated with a part has two components [4]. The first component is 

the part identification number and the second component represents the set of possible next 

operations determined by the process plan of the part. It is the second component that is recognized 

by the colored Petri net model of the cell, and the first component is used for part tracking and 

reference purposes. Let Bi be a (1xm) binary vector representing all the operations needed for the 

complete processing of part type i. Let Ei be a (mxm) matrix representing the precedence relations 

among the operations of part type i, where m is the number of operations that are performed in the 

cell. For a part to be processed in the cell it requires at least one operation that can be performed in 

the cell, that implies Bi > 0. Also, for a part type where there is no precedence relationship between 

operations required, Ei is a matrix of zeros. For a part with identification x and part type y, the initial 

color of the corresponding token is:   

    

 )]E . (B - B [yx,  V yyyyx =            (2) 

A B C 



 

Where (By 
. Ey) is a matrix multiplication. 

For example consider the process plan of part type L1 shown in Figure 1. 

 

 

 

Fig.2 Process plan for part type L1 

Our process plan first requires operation op 1 and then op 2 for complete processing. We assume 

that our FMS can complete 5 different types of operations. For part type L1, we have: BL1 = [0 0 0 

1 1]  

1LE  = 

01A000op1
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Where A1 and A2 are the availability of measuring cell 1 (which performs operation 1), 

respectively the availability of measuring cell 2 at time t. The availability Ai of cell i is calculated, 

as shown in Section 4, with Markov chains. We notice that Ai is reevaluated at each major change 

in the process plan of FMS (such as occurrence of events: damages of hardware equipments, 

changes of process plan, etc). Assuming that A1 > A2, then we assign to A1 value 1 and to A2 value 

0, so that applying (2), the initial color of the token corresponding to a part that belongs to part 

type L1 with identification 1 would be VL1.1 = (L1.1, 00001). Note that the information carried in 

the initial color indicates the first (next) operation(s) to be performed. Generally, we may say that 

V is the set of colors that represent all the possible combinations of operations that can be 

performed in the mesuring system. Each member of set V is a vector of n components, where n is 

maximum number of operations performed in the cell. For example, in a FMS with 5 operations to 

be performed, we may have V = {00000, 00001, …, 11111}. For simplicity, we assumed that the 

function which maps operations to measuring devices on which these operations can be performed 

is modeled in the associated CPN with places, labeled with the operation identification number. 

  

4. Modeling the measuring cell system 

The requirement for measuring cell i, including N1 devices of type Mi, is that at least ki of these 

devices must function for the system to be operational. To determine the system availability which 

includes imperfect coverage and repair, a failure state due to imperfect coverage and repair was 

introduced [3]. To explain the impact of imperfect coverage in measuring, consider the system that 

includes two identical measuring devices (Fig.3). If the coverage of the system is perfect, i.e., c = 

1, then operation op 1 is performed as long as one of the devices is operational. 

 

 

 

 

 

Fig.3 The measure system with two identical devices 

 

If the coverage is imperfect, then operation op 1 fails with probability 1 – c, if one of the devices 

in Fig.3 fails. We may say that, if operation op 1 has been scheduled on device M1 that has failed, 

then the system in Fig.3 fails with probability 1 – c. The Markov chain for machine cell i is shown 
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in Fig.4. The coverage of the cell in Fig.4 is c and successful repair factor is r. At state ki, cell i is 

functioning with only ki devices operational. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Markov model for cell i 

 

At state Ni cell i is functioning with all Ni devices operational. The state of cell i changes from 

working state wi, for ki ≤ wi ≤ Ni , where wi is the number of operational devices in cell i, to failed 

state Fi , either due to imperfect coverage (1-c) or due to imperfect repair (1-r). If the fault 

coverage of the system and repair of the components are perfect, the Markov chain in Fig.4 

reduces to a one-dimensional model [7]. The solution of the Markov chain model in Fig.4 is a 

probability that at least ki devices in cell i are working at time t.  Availability formula for cell i is 

given in the next relation: 

∑
=

=
i

ii
i

N

kw
ki (t)P  (t)A , for i = 1, 2, …, n         (3) 

 

Where: Ai(t) = availability of cell i at time t; 

( )tP
ik  = probability of ki devices being operational in cell i at time t; 

Ni = total number of devices of type Mi in cell i; 

ki = required minimum number of operational devices in cell i. 

 

After a Markov chain for each cell of the measuring system is constructed and desired 

probabilities Ai(t),  i = 1, 2, …, n corresponding to machine cell are determined, the stochastic 

colored Petri net can be initialized, and the simulation process of FMS begins. In Fig.4 the 

parameters λ, µ, c, r denote respectively the failure rate, repair rate, coverage factor, and the 

successful failure repair rate of a measuring equipment. The first part of the horizontal transition 
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rate with the term 1-c represents the failure due to imperfect coverage of alternative equipment. 

The second part, with the term 1-r represents imprecise repair of the hardware components. The 

vertical transitions reflect the failure and repair of the equipments. We assume that only one device 

fails at a time, in a certain operation cell.  

 

5. Conclusions 

In this paper we have proposed a new architecture to model a large class of measuring systems 

using stochastic colored Petri nets. Advantages of this approach are: 

- Alternate sequencing of operations is allowed during processing; 

- Device assignments for operations are made dynamically during processing; 

- The model of the measuring system created captures all possible operation sequences in the 

system. 

An analytical technique for the availability evaluation of measuring systems was also presented in 

this paper. The advantages of this approach are: 

- The construction of large Markov chains is not required, and also; 

- It incorporates imperfect coverage and imperfect repair factors in the Markov models; 

- It reveals when the system coverage and the component repair are not perfect; 

- It allows determination of the timing of a major repair policy of the systems. 

Further researches will focus on modeling measuring systems with semi-Markov processes. 
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