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Abstract. The immune system is a very complex cognitive system. Based on immunological principles we 

propose an approach in order to study the mechanisms that govern the immune system’s functionality. A 

two-module algorithm is developed, which launch a specific action against an anomalous situation. The 

Petri nets tools are assumed in this approach. Also, Markov Decision Processes (MDPs) with a truncated 

state space to the problem with infinite state space considered. We show that an optimal stationary policy 

exists and we apply the results of [1] to a dynamic scheduling problem of the immunological response to 

external stimuli. 

 

 

1. Introduction 

Immunity depends on continuous movement of cells through blood, tissue and lymph [2]. Lymphoid cells 

travel to the secondary lymphoid organs of the spleen, lymph nodes and Peyer's patches to encounter 

antigens acquired from the environment via blood, lymph or across mucous membranes. Where and by 

which cells antigens are presented to the trafficking cells has a significant influence on the outcome of the 

immune response with respect to antibody isotype commitment and future homing preference of memory 

and effectors lymphoid cells (Fig.1). 

 

Fig.1 Mammalians immune system components  

Lymphocyte traffic patterns, regulated by selective expression of adhesion proteins in peripheral or 

mucosal lymphatic tissues, permits segregation of immunological memory by causing antigen-primed 

cells to return to specific anatomic destinations committed to expression of peripheral or mucosal 

immunity. Among potentially myriad factors, these microenvironments include prevalence of certain 

cytokines, adhesion to- and co-stimulation by specific cells, and still unknown tissue factors that favor 

commitment of B cells to specific immunoglobulin types or T cells to peripheral or mucosal immunity.  
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Recirculation of a precursor pool of uncommitted lymphocytes from the blood into lymph nodes or 

mucosal lymphatic tissues and then back to the blood again, integrates immuno-surveillance with organ-

selective immune functions across the segregated systems. The magnitude of cell traffic reflected by the 

number of cells returned to the blood in efferent lymph is enormous. Enough lymphocytes recirculate 

from lymph to blood to replace the total blood lymphocyte pool from 10 to 48 times every 24 hours. 

Random and segregated traffic patterns are essential for efficient operation of the two separate but 

overlapping immune systems in mammalian species. The feat of coordinating an anatomically dispersed 

immune system (comprised of mobile, circulating, individual and extremely diverse cells) depends upon 

cell movement and a system of membrane recognition and activation signals. A mixture of integrins, 

selectins and chemokine receptors expressed by lymphocytes and endothelial cells are involved in 

precipitating selective emigration of lymphoid subsets from the blood in tissues where specific counter-

receptors are displayed on luminal surfaces of endothelial cells. These recognition events could occur in 

skin, mucosae or specific secondary lymphatic tissues such as Peyer's patches or peripheral lymph node. 

Receptor ligand interactions allow these cells to find their way around the body, where to adhere to 

endothelium, when to migrate and how to find where they have to act within tissue. The cell diversity and 

variety of information processing mechanisms make the immune system a very complex system. 

Understanding the way this organ solves its computational, and how it detects and reacts to novel 

situations and how it unleashes smooth early secondary responses is a rough job. In this paper we present 

an approach to immune systems by modeling the characteristics processing mechanisms with discrete 

event systems (DES) formalisms. Our goal is to introduce a new algorithm in order to analyze the 

organisms fight with viruses and microbes. The proposed algorithm is inspired in the current 

understanding of the mammal immune system although, in detail, it does not exactly follow the biological 

steps. Many of the detailed features of the immune system are dependent on the biological context where 

it operates and on the type of the cell hardware that it uses. We try to take what is best from the clever 

evolutionary mechanisms developed by nature, as well as we understand these mechanisms, and to 

improve theirs analyze, in order to find new models for treating diseases. For example, the interaction 

between the T-module and B-module takes the reverse order of what is found in nature, with a clone 

proliferation phase preceding T-phase. Clone proliferation is an expensive operation, but in software, e.g., 

in modeling process, it is a virtual (not very time consuming) operation. The approach presented in this 

paper has a wide range of applications to many biological, but also to many technical systems. Moreover, 

based on the optimal policy for the limiting problem build with Markov decision processes (MDPs), we 

exemplify an optimal stationary policy [3] on a dynamic scheduling response of the immune systems to 

the attack of different pathogen agents. 

 

 

2. Immune system mechanisms 

 

Some of the immune system features are [1], [4], [5]: 

- Uniqueness: The immune system of each individual is unique, although they are similar. 

- Imperfect detection and mutation: By not requiring a precise identification of every pathogen agent, 

the immune system becomes flexible and increases its detection range. But, if a pathogen agent is 

detected, a mutation mechanism refines the identification. Identification of pathogen agents is made 

by partial matching, and this mechanism allows to a small number of the detectors (10
8
 to 10

12
) to 

recognize nonself patterns on the order of 1016. This is modeled in DES formalism with a small 

number of detectors, which are at a later stage modified by the dynamics. 

- Learning and memory: The immune system can learn the structure of the pathogen agents, and 

remember those structures. Future responses are much faster and, when made at an early stage of the 

infection, no adverse effects are felt by the organism. We underline the importance of this feature for 

modeling the immune system with Petri nets as an important formalism used in the representation of 

DES. 

- Novelty detection: The immune system can detect and react to pathogen agents that the body has 

never encountered before. This feature will be modeled with controlled Petri nets, which will 

determine the appearance of bottlenecks in the net, in order to simulate the censoring mechanism for 

T-cells that occurs in the thymus. 

- Distributed detection: The detectors used by the immune system are highly distributed and not subject 

to centralized control. This feature can be modeled with free choice Petri nets.  
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3. Modeling algorithm 
 

Our work is based on the algorithm given in [6]. In this algorithm, the states of the system, both normal 

condition and anomaly states, are characterized by the values of n variables. The n-dimensional state 

vector is normalized in such a way that all variables take values in the interval [0,1]. The values of the 

state vector in normal conditions define the self S of the system. The anomaly states are the nonself of the 

system. The algorithm adopted by us contains two modules. The T-module discriminates self from 

nonself. The B-module reacts to all frequently occurring state vector values (self and nonself codes) and 

reports to the T-module, updating it. T-Module contains a set of detectors which are vectors in nonself 

space, that is A = [ 0,1]
n 
\ S. Each element x  of A is able to detect anomalies inside a radius xr  around it. 

When xrxy <− , y being the current state of the system, an anomaly of type x is reported. In the Petri 

net model a bottleneck, caused by the fact that an anomaly of type x is not allowed to fire some transition, 

permits us to emphasize this.  

The T-module is initialized by choosing points in A at random with corresponding radius xr , until a 

reasonable coverage of the space A is achieved with d detectors. Fig.2.a illustrates this: the small circles 

are the self patterns. To each point in the self corresponds a code (a set of vector coordinates) and an 

affinity neighborhood of normal operating conditions inside a radius xr . This approach corresponds to an 

initial marking in the Petri net model. The anomaly detectors are shown in the figure as large circles. 

When a measurement y of the system arrives at the T-module, the algorithm verifies whether this code 

has affinity with one of the detectors or with the self. The affinity of this vector with those defining the 

self and the other is measured by the Euclidean distance, and correspondingly in the Petri net model is 

measured with the predicates, assigned to certain transitions, which can or can not validate the firing of 

the respective transitions. If the detection algorithm falls in the self domain, no detector is activated. 

If affinity is found with one of the detectors x ’, an anomaly of type x ’ is registered. This means, that in 

the Petri net model we’ll create new predicates for certain transitions, in order to continue the simulation 

and to ensure the Petri net vivacity. The B-module generates vector codes corresponding to the most 

frequently occurring states of the system and sends these codes as alert codes to the T-module. By itself 

or in interaction with the B-module, the T-module is an adaptive system. As an illustration in Fig. 2.a., 

and in Fig.2.b, is considered a typical situation: suppose that a nonself code (the star symbol in Fig.2.a) is 

detected. Then, first, the detector changes its code to increase the affinity to this type of anomaly, and 

secondly, the algorithm creates a new detector (supposing that the old one has not enough affinity with 

the external code) with a resolution defined by the smallest distance to the other detector boundaries as 

shown in Fig.2.b. In the above way, the T-module modifies the initial set of detectors produced by the 

censoring mechanism. This means that it change the number, modify the space distribution and change 

the resolution, creating a specific anomaly detection system. Regarding the Petri net model we may say 

that we are dealing with an adoptive Petri net (AdPN). 

B-module improve the A space coverage of the T-module and, it has a total population of tn  vectors 

given by relation (1). 

lclt nnn +=       (1) 

 

Where, ln  represents the initial population of vectors lx  

            lcn represents the population of clone vectors lcx . 

The number of clone vectors changes as the system evolves. In [6] it is allowed that the number of clone 

vectors is limited to a fraction β of the initial population:  
 

llc nn ⋅= β       (2) 

 

The dynamical evolution of the vector population involves mutation and stimulation features that are 

described next. Mutation takes place every time an external code y arrives to the B-module. The mutation 

process begins by selecting, from the total population, a sample of vectors mx . The mutation process 
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operates only in this part of the population and in those codes that are close to the external signal y . The 

mutation process depends on the affinity between the vectors mx  in the sample and the external code y . 

 

Fig.2. T-module structure. a) Self patterns (small circles) and anomaly detectors. b) Creation of a new 

detector and shift to a new detector to increase affinity with an anomaly. 

 

If the code y and the vector mx are far away, as in zone A of Fig.3, no affinity is considered to exist and 

the code mx is not changed. Also, in zone B there is no modification. 

 

Fig.3. Zones A-D for the mutation process 

 

For codes cx in zone C, the mutation process occurs in a deterministic way. The external code y  is 

assumed to have mass one and the vectors in zone C mass lm . The new code in population corresponds 

to the center of mass given in relation (3). 
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For zone D, the mutation assumes a random process. The new position of the population vector Dx is 

given by a random distribution for each point of the line defined by the old position of the vector and the 

position of the external code 

 

( ) ( )( )txytxtx DDD −+=+ η)(1     (4) 

 

When the external code appears repeatedly in the same region, the mutation process leads to a population 

cluster in that region. As we mentioned in Section 2 the cluster of population in some regions is modeled 

with controlled Petri nets, which will determine the appearance of bottlenecks in the net. 

Stimulation is a necessary process in the case when new external codes arrive in the B-module and the 

mutation process destroys the initial uniformity of the vector population. In this situation, if a strange 
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external code appears, its detection may be missed. To ensure that this case is avoided, a stimulation or 

cloning mechanism has been included in the algorithm to create new vectors in the region where the 

external code appears. The cloning mechanism is activated when the rate of external codes arriving in a 

region exceeds a specified threshold. In the Petri net model, this process is modeled adding to the net new 

location, e.g., building a more complex net. In order to simplify the Petri net model, a pruning algorithm 

given in [7] is applied. This simplification of the Petri net has a real support, because in the immune 

systems there is a death mechanism for the clone vectors. 

 

 

4. Scheduling the models of immune systems 
  

The algorithm described in Section 3 does not specify the way of action of the immune system when 

several extern pathogens occur simultaneously. In order to respond to these pathogens, the immune 

system needs an action rule similar to the rule of attending to several clients in a queue. The associated 

Petri net model will be a colored Petri net, where the known pathogens are scheduled in a color code 

ordered by priorities. The unknown pathogens will be isolated until the known pathogens will be treated 

by the system. This means that the unknown pathogens will have invalidated entering transitions, because 

the corresponding predicates are not yet allocated to these transitions. 

According to the huge dimensions of Petri net models we try to find out if this scheduling problem has a 

limit. The answer to this problem is based on the convergence of Markov decision processes (MDPs) with 

a truncated state space to the problem with infinite state space. In [1] it is shown that an optimal 

stationary policy exists for this problem, such that the number of randomizations it uses is less or equal to 

the number of constrains plus one. The following example focuses on this approach. 

We suppose that different pathogens compete for access to an immune system, which we assume that is a 

shared resource. At the beginning of each time slot priority is given to one of the pathogens according to a 

pre-specified decision rule, and the service is made in one unit of time (we may consider here the 

incubation time, which is different for each type of disease). If the service (i.e., the action of the immune 

system) is successful, the pathogen disappears from the system; otherwise it remains in the queue. 

The problem is to find a scheduling policy that minimizes a linear combination of the average delays of 

some types of traffic subject to constrains on average delays of other types. At time t, i
tM pathogens 

arrive to queue i, 1 ≤ i ≤ N. Arrival vectors ( )N
ttt MMM ,...,1= are independent and form a renewal 

sequence, with finite means iλ . During a time slot (t, t+1) a pathogen from any class i, 1 ≤ i ≤ N, may be 

treated, according to some policy, which is a pre-specified dynamic priority assignment. If treated, with 

probability iµ it completes its service and leaves the system; otherwise it remains in its queue. 

A generic element of the state is given by ( )Nxxxx ,...,, 21= and it represents an N dimensional vector of 

different queues’ size. Assume that 1
1

<∑
=

N

i i

i

µ

λ
. Consider the linear cost function ( ) ∑ ⋅=

=

N
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ii xcaxc
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, , for 1 ≤ k ≤ K, where ic and k
id are non-negative constants. Thus the costs ( )uxC ,  

and ( )uxD k , are related to linear combinations of expected average length of the different queues. The 

constrained control problem is: find u ∈ U that minimizes ( )uxC , s.t. ( ) k
k VuxD ≤, , k = 1, …, K, where 

kV are given constants. Consider the expected average costs. By Little’s law this quantities are 

proportional to the respective waiting times in the different queues. Let { }jgG = be the set of all strict 

priority rules. A strict priority rule is a policy for which each type of pathogen is served only if there are 

no pathogens with higher priority in the system, and if it is the first in his queue. 

Optimal policies for constrained control problem are obtained by time multiplexing between the different 

jg . Define an L dimensional vector parameter ( )Lαααα ,...,, 21= , where α is a probability measure, 

and GL = . Define a “cycle” as the time between two consecutive instants that the system is empty (e.g. 

the immune system is not busy with external pathogens). During any cycle, a jg is used. A policy *α is 
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defined as a policy that chooses different policies jg s.t. the relative average number of cycles during 

which jg was used is equal to jα , where ∞→t . It is shown in [7] that 

    ( ) ( )∑ ⋅=
=

L

j
jj gxCxC

1
1

*
1 ,, αα     (5) 

For a given d > 0, consider the following linear programming problem:  Find LR∈α that minimize 

( )∑ ⋅
=

L

j
jj gxC

1
1 ,α , subject to ( ) dVgxD k

L

j
j

k
j −≤∑ ⋅
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1

,α , where k = 1, …, K, and ∑ ≥=
=

L

j
j

1

0,1 αα .  

In [7] it is shown that ( )0*α is an optimal policy for such a constrained control problem. For the Petri net 

model of the immune system, this means that the initial marking defines the vivacity of the net. 

 

 

5. Conclusions 
 

In time, nature’s evolutionary processes created an efficient weapon to fight with all kinds of hostile 

environments. To model these natural mechanisms seems to be a sensible approach. In this paper we 

proposed a possible tool for this approach: Petri nets. However, some of the features of the biological 

processes are domain specific and depend on the cell hardware that is used. Therefore, to understand and 

to model these processes is a hard task. 

The immune system, with its cell diversity and variety of information processing mechanisms, is a very 

complex system. The high complexity of the immune system implicates very large Petri nets models. In 

order to minimize the dimensions of models, we introduce the notion of adaptive Petri nets. Therefore we 

have shown that there is a limit in the schedule problem of different pathogens, which compete to access a 

limited service capacity of the immune system. For this we considered the Markov Decision Processes 

with a truncated state space to the problem with infinite space. Future work will refine the above 

presented approach by considering differential adaptive Petri nets for modeling the mechanism which 

govern the immune system; this is motivated by the necessity to model certain nonspecific mechanisms 

like cell apoptosis, s.a., which was not discussed here. 
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