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Abstract – This paper focuses on a method for synthesizing deadlock 
avoidance controllers in flexible manufacturing systems. The 
modelling process of a supervisory policy that enforces liveness is 
realized with Petri nets. Petri nets are a popular modelling paradigm 
for a wide class of discrete event systems. Our supervisory policy is 
based on the next two steps in modelling process: 
a) A bottom-up approach for the synthesis of a controlled Petri net 

model for the production flow; 
b) A liveness condition for the above mentioned model, under the 

circumstances of underlying the potential peril path (PPP) in the 
Petri net model by respecting the concept of minimal resource 
requirements. 

While the deadlock avoidance controller ensures the liveness of the 
global Petri net model (GPN) of the FMS, an algorithm for 
estimating the system throughput is introduced. The utility of our 
approach in alleviating the computational burden of policy synthesis 
is illustrated via example. 
 

1. Introduction 
 
A flexible manufacturing system (FMS) consists of a number 
of systems, usually connected in a computer controlledr 
configuration of various kinds of process actions 
implemented with material storage facilities, material 
processing devices, raw material and finite products 
transportation devices, control units, etc. Various types of 
jobs are loaded at discrete point of time into the FMS for 
processing. Each type of job requires a prescribed sequence of 
technological operations in order to schedule the 
manufacturing resources. The rational utilisation of limited 
resources among various competing jobs by operating in an 
appropriate manner the FMS constitutes the goal of a 
supervisory policy of a FMS. Many control algorithms in a 
FMS usually adopt a hierarchical structure due to its 
complexity: a high level scheduling function to determine the 
processing sequence among operations of jobs, and a low 
level real-time control of detailed manufacturing processes 
[1,2]. Among the many real-time control problems, deadlocks 
are highly undesirable where a set of jobs are in circular 
waiting for resources being held by another job in the set 
while occupying a resource needed by one of the other job in 
the set [3].  
Some deadlock avoidance schemes for controlling a FMS 
have been proposed lately [4,5]. As the dynamics of a FMS is 
event-driven, asynchronous and concurrent in nature, many of 
these schemes adopted Petri net (PN) models as a formalism 
to describe FMSs and to develop deadlock avoidance 
mechanisms. Viswanadham et al.[4] considered a generalized 

stochastic PN (GSPN) model and proposed an on-line, finite-
step look-ahead monitoring and deadlock avoidance scheme. 
By monitoring the system, their controller identifies the 
current state and examines whether the occurrence of a set of 
admissible events in the next few steps leads the system to a 
deadlock state. If so, the controller avoids such an undesirable 
evolution through controlling controllable events. If not, 
events for the next step are allowed to take place and the 
controller repeats the above procedure. Wonham et al.[5] 
studied the deadlock free supervisory control problem in the 
context of finite state machine models. They synthesized the 
supervisory control for discrete event processes by imposing 
restrictions on the occurrence of controllable events. Two 
types of deadlock free supervisors were investigated: the total 
deadlock free supervisor and Σ0 deadlock free supervisor. The 
latter prevents the process from reaching a state under which 
events in a set Σ0 can no longer occur, while the former has Σ0 
as the set of all admissible events. 
In operating a FMS, it is also desirable to make the FMS 
capable of processing all types of jobs repetitively in addition 
to keep the FMS live in terms of PN modelling formalism. If 
a FMS is live, then it is deadlock free but not vice-versa [3]. 
In this paper, the deadlock avoidance controller (DAC) is 
driven by a class of PN models which combines the ideas of 
[1,4] and consists of two ingredients: 
a) A bottom-up approach for the synthesis of a controlled 

Petri net (CPN) model for the production flow; 
b) A liveness condition for the above-mentioned model, 

under the circumstances of underlying the potential peril 
path (PPP) in the PN model by respecting the concept of 
minimal resource requirements. 

The resultant deadlock avoidance algorithm in conjunction 
with the mentioned PPP avoidance policy constitutes a DAC 
as depicted in Fig.1. 
 
 
   
 
 
 
 
 
 
 
 
 

Fig.1 DAC controller for a FMS 
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The construction of a CPN model starts wits independent PNs 
to represent the manufacturing processes of individual jobs 
and the manufacturing activities of individual manufacturing 
resources. These jobs and resources are merged into a global 
PN (GPN) according to their common manufacturing 
activities. The production flow characteristics of the FMS are 
incorporated into the GPN to form a CPN. A deadlock 
avoidance controller of the FMS includes a control policy that 
allows, in accordance with the PPP avoidance algorithm, the 
occurrence of concurrent production events, by respecting the 
concept of minimal resource requirements, so that the CPN 
stays live, and hence deadlock free. As it is well known the 
deadlock in PNs is related to siphons [6], we use control 
places to prevent the total marking in the siphons from 
becoming zero [7]. Finally, note that when the PNs are 
bounded and the initial marking is fixed, it is possible to 
transform the problem from the PN framework to finite 
automata, and so to solve the problem by using finite 
automata methodologies, such as supervisory control 
technique. Furthermore, the use of PNs in deadlock 
prevention may be preferable because deadlock often occurs 
in systems with concurrencies, which are better modelled by 
PNs. 
 

2. A Global Petri Net Model 
 
In this section we describe the construction of the GPN given 
in Fig.1 that consists of resource subnets, job subnets and 
exogenous control given by an algorithm, in order to describe 
the PPP avoidance algorithm in the context of FMS. 
 
A. The resource subnets 
 
Let R be the set of resource types in a FMS. We assume that a 
unit of resource can only be involved in one operation at a 
time. We model such an activity by a PN, G = (P,T,F,M0) 
where P is a finite set of places with cardinality |P| and places 
represent the state of the resources, T is a finite set of 
transitions which represent the operations of the respective 
activity, F is a finite set of transitions arcs, M0 : P → Z|P| is the 
initial marking of the PN with Z as the set of positive 
integers. The marking indicates the number of tokens in each 
place and is a state of the system. The readers may refer to [8] 
for definitions of the PNs. Since we consider renewable 
production resources, such as machines, buffers, conveyors, 
the PN of the k-th activity starts with place pk(0) = p(0) (p(0) 
represents the resource idle state), has a transition input arc 
between pk(i-1) and tk(i), i = 1, …, n, (pk(i-1) and pk(i) 
represent the state of the resource before and after transition 
tk(i) respectively, and n is the number of distinct operations in 
the k-th activity). 
As each transition tk(i) has one input place and one output 
place, such a PN is called sure. We define a merging 
operation, ڤ, as an operation that combines two PNs (PN1 
and PN2) into a new PN, PNnew, by merging each pair of 
common elements (places, transitions, arcs) between PN1 and 
PN2 into a single element; the remaining distinct parts 
between PN1 and PN2 are kept unchanged and become parts 

of PNnew. We denote PNnew = PN1 ڤ PN2. The number of 
tokens in a resource subnet corresponds to the capacity of the 
respective resource; therefore the token flow in the GPN 
represents the state transition of the resources. We denote the 
resource subnet of type - r resource as PNr, where each 
transition in PNr maintains exactly one input place and one 
output place; PNr therefore is a sure net [7,8]. 
 
B. The job subnets 

 
A job subnet is constructed in a similar manner to that of a 
resource subnet. In constructing a job subnet for one type job, 
we again use a transition to represent an operation while using 
a place to represent a job state. There is a source transition for 
the k-th job tk(1), that generates processing tokens which 
model the first operation that releases a type of one job into 
the production system. We assume that the production 
process of the job type j consists of a sequence of transitions 
tj(1), tj(2), ..., tj(k) of k activities. The output place for the last 
transition tj(k) is a sink place that represents an infinite 
storage of finished jobs. We denote a job subnet as PNj = (Pj, 
Tj, Fj, mj), where mj is the number of type j jobs that are being 
processed. Such a job subnet usually is an acyclic marked 
graph, since the production process is acyclic, and each place 
has one input and one output transition; PN therefore is a sure 
net. Tokens in a job subnet certain that operation holding 
resources are in process. 
 
C. Global Petri net 

 
By merging resource and job subnets we construct the Global 
Petri net (GPN) that models the interactions among 
operations, resources and jobs in the FMS by: 
 

GPN = PNr ڤ PNj (1) 

In a FMS there are control points that can be applied to jobs and 
their operations in order to control the production flow. In terms 
of PN we add to each transition of the GPN that corresponds to a 
controlled operation, a control place pc and a transition input arc 
between pc and the transition. The control places model the 
control conditions in a FMS, respectively incorporate exogenous 
conditions for enabling the associated transition. A controlled 
transition (e.g., a transition with an input arc from a control 
place) may be fired as many times as the number of tokens in the 
control place. A control policy [5,6] is a mapping that generates a 
sequence of control actions for the GPN based on its initial 
marking M0, which evolves in a set of admissible markings. We 
exemplify the construction of a GPN (by merging the resource 
subnets with job subnets): Consider the system depicted in 
Fig.2., which consists of two machining tools (M1 and M2), two 
robot arms, and two conveyors.  
Each machining tool is serviced by a dedicated robot arm, 
which performs load and unload tasks. One conveyor is used 
to transport work pieces, a maximum of two at a time. The 
other conveyor is used to transport empty pallets. There is one 
pallet available in the system. Each work piece is machined 
on M1 or M2, in this order. 



 
 
 
 

  
 
 
 

Fig.2 An example of a FMS 

 
Fig.3 shows the two resource subnets which correspond to the 
jobs of M1 and M2. Places p1, p2, p3 model the resources of 
raw pieces and pallets; the M1 and M2 availability, and also 
final products and empty pallets, respectively. Places p4 (p6) 
and p5(p7) model the robot 1 and robot 2 availability (when 
marked), respectively. 
 

 

 
 
 
 
 
 
 
 
 
 
 

Fig.3 Resource subnets: (a) for M1; (b) for M2. 

 
In Fig.4 are depicted the two job subnets of the example given 
in Fig.2. We notice that the two machines are complementary, 
i.e., they execute alternatively the same jobs, in order to 
ensure the necessary throughput of the system. 
 
   
 
 
 
 
 

Fig.4 Job subnets: (a) for M1; (b) for M2. 

 
Following the construction algorithm of a GPN, as it is 
described above, we obtain the global Petri net (GPN) model 
of the FMS, in Fig.5.  
 
 
  
 
 
 
 
 
 
 

Fig.5 The GPN model for the example given in Fig.2. 

We notice that in Fig.5, in order to ensure the liveness of the 
GPN model, we added some arcs (drawn with dotted lines) 
which by creating a control mechanism kanban, ensure the 
verity of the relation [6] (i.e., the PPP avoidance algorithm): 

Σ M(p) ≥ 1          (2)  

Where M(p) is the marking of the places in the siphon S, and 
the relation (2) must be verified for all markings M reachable 
from the initial marking. We apply relation (2) to potential 
peril paths, PPP, (i.e., kanban structures, which are 
constructed as shown in Fig.5) which represent, obviously, an 
extension of syphons (a syphon is a set of places S ≠ Ø such 
that • S ≤ S •, where • S is the input transition of S [7]). In [6] 
it is proven that if relation (2) is true, then the respective 
syphon is active, i.e., liveness. It can be easily observed that 
kanban mechanisms ensure the verity of relation (2), so that 
PPP such defined are liveness, and they characterize the GPN 
structure. 
For the GPN model of a FMS there is one problem to be 
solved: evaluating the system performance. 
 
 

3. Performance evaluation of GPNs 
 
In order to study the performance of a system, the GPN model 
built in the previous selection is extended to include the 
notion of time [5,6]. 
In such extended GPN, an execution time τ is associated with 
each transition. When a transition initiates its execution, it 
takes τ units of time to complete its execution. In this paper 
we extend the performance evaluation given in [7] to GPN 
characterized by the PPP structures. We mention a theorem 
given in [7], which states the basis of our algorithm: 
Theorem: For a sure Petri net, the minimum cycle time 
(maximum performance) C is given by:  
 

C = max {
kN

kT
, k = 1,2,…,n}        (3) 

Where ∑

∈

=

kLit

iτ  Tk = sum of the execution times of the 

transition in circuit k 

∑

∈

=

kLip

iM Nk = total number of tokens in the places in circuit k 

n = number of circuits in the net 
Lk = loop (circuit) k 
 
Because a GPN is a sure net, we can apply this theorem to our 
model of a FMS. A drawback of this approach is that all 
circuits in the net must be enumerated. In the design of  FMS, 
the required performance is usually given. We give the next 
procedure for verifying system performance, and we 
exemplify its extension on a GPN, i.e., for the GPN given in 
Fig.5, where the firing time τi of transitions ti, i = 1,2,3, are: τ1 
= 5, τ2 = 4, τ3 = 2 units of time (u.t.). 
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A. Algorithm for verifying FMS performance: 
 
1) Express the token loading in an n x n matrix P, where n is 
the number of places in the GPN model of the FMS. Cell (pi, 
pj), i ≠ j, in the matrix equal q if there are q tokens in place pi, 
and place pi is connected directly to place pj by a transition; 
otherwise (pi, pj) equals o. Matrix P of the example system in 
Fig.5 is shown in Fig.6. 

p1   p2   p3   p4   p5   p6  p7 























0000100
0000010
0000100
0000010
0000000
0000000
0000010

 

 
Fig.6 Matrix P for GPN given in Fig.5 

 

2) Express transition time in an n x n matrix Q. Cell (pi, pj), i 
≠ j, in the matrix equal to τi if pi is an input place of transition 
i and pj is one of its output places. Cell (pi, pj) contains 
symbol x if pi and pj are not connected. Matrix Q for the 
example system is given in Fig.7. 

p1   p2   p3   p4   p5   p6  p7 























xxxx4xx
xxxxx5x
xxxx4xx
xxxxx5x
2x2xxx2
x5x54xx
xxxxx5x

 

 
Fig.7 Matrix Q for GPN given in Fig.5 

 

3) Compute matrix CP-Q (with n-w = ∞, ∀ n∈Rt) then use 
Floyd’s algorithm to compute the shortest distance between 
every pair of nodes using matrix CP-Q as the distance matrix. 
There are three cases: 
a) All diagonal cells of matrix CP-Q are positive (i.e., CNk-

Tk > 0), the performance is higher than the given 
requirement. 

b) There are diagonal cells equal to zero and positive, the 
system performance meets the given requirement. 

c) Some diagonal cells of matrix CP-Q are negative; the 
system performance is lower than the given requirements. 

In the example, C = 11, so that CP-Q is given in Fig.8. 
p1    p2    p3    p4    p5    p6   p7 

∞∞∞∞∞∞
∞∞∞∞∞∞
∞∞∞∞∞∞
∞∞∞∞∞∞

∞∞∞∞
∞∞∞∞∞
∞∞∞∞∞∞

7
6

7
6

2-2-2-
5-4-

6

 

 
Fig.8 Matrix CP-Q for GPN given in Fig.5 

After applying Floyd’s algorithm to find the shortest distance 
between every pair of places, as it can easily be seen from 
Fig.8, the diagonal entries of matrix CP-Q are positive, and the 
rest of them are zero. This implies that the performance 
requirement of C = 11 is satisfied. Since cells (p1, p1), (p2, p2) 
and (p3,p3) are zero’s, the bottleneck circuit is p1t1p2t2p3t3, as it 
is proven in [6]. 
 
 

4. Conclusions 
 
In this paper we have discussed a systematic method to build 
the Petri net model of a controller that keeps a FMS live and 
we have also discussed an algorithm to evaluate and verify 
the performance of FMS. We first adapted a bottom up 
approach to develop a kanban controlled Petri net model, i.e. 
global Petri net – GPN, of a FMS and we delineate the 
minimal resource requirements as a necessary and sufficient 
condition to keep the GPN live. 
The performance evaluation of the GPN model was also 
considered by adopting an algorithm for the GPN model 
proposed here. In the case of general Petri nets models, the 
verification of system performance no efficient heuristics 
methods are known. Further research will focus on this 
attempt. Colored Petri nets seem to permit a much more 
flexible approach. Further work will investigate this path. 
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