
SUPERVISORY POLICIES FOR FLEXIBLE

MANUFACTURING SYSTEMS

Călin Ciufudean Constantin Filote Adrian Graur
“Ştefan cel Mare” University of Suceava, Faculty of Electrical Engineering

calin@eed.usv.ro
filote@eed.usv.ro

adriang@eed.usv.ro

Abstract – This paper focuses on a method for synthesizing deadlock
avoidance controllers in flexible manufacturing systems. The
modelling process of a supervisory policy that enforces liveness is
realized with Petri nets. Petri nets are a popular modelling paradigm
for a wide class of discrete event systems. Our supervisory policy is
based on the next two steps in modelling process:
a) A bottom-up approach for the synthesis of a controlled Petri net

model for the production flow;
b) A liveness condition for the above mentioned model, under the

circumstances of underlying the potential peril path (PPP) in the
Petri net model by respecting the concept of minimal resource
requirements.

While the deadlock avoidance controller ensures the liveness of the
global Petri net model (GPN) of the FMS, an algorithm for
estimating the system throughput is introduced. The utility of our
approach in alleviating the computational burden of policy synthesis
is illustrated via example.

1. Introduction

A flexible manufacturing system (FMS) consists of a number
of systems, usually connected in a computer controlledr
configuration of various kinds of process actions
implemented with material storage facilities, material
processing devices, raw material and finite products
transportation devices, control units, etc. Various types of
jobs are loaded at discrete point of time into the FMS for
processing. Each type of job requires a prescribed sequence of
technological operations in order to schedule the
manufacturing resources. The rational utilisation of limited
resources among various competing jobs by operating in an
appropriate manner the FMS constitutes the goal of a
supervisory policy of a FMS. Many control algorithms in a
FMS usually adopt a hierarchical structure due to its
complexity: a high level scheduling function to determine the
processing sequence among operations of jobs, and a low
level real-time control of detailed manufacturing processes
[1,2]. Among the many real-time control problems, deadlocks
are highly undesirable where a set of jobs are in circular
waiting for resources being held by another job in the set
while occupying a resource needed by one of the other job in
the set [3].
Some deadlock avoidance schemes for controlling a FMS
have been proposed lately [4,5]. As the dynamics of a FMS is
event-driven, asynchronous and concurrent in nature, many of
these schemes adopted Petri net (PN) models as a formalism
to describe FMSs and to develop deadlock avoidance
mechanisms. Viswanadham et al.[4] considered a generalized

stochastic PN (GSPN) model and proposed an on-line, finite-
step look-ahead monitoring and deadlock avoidance scheme.
By monitoring the system, their controller identifies the
current state and examines whether the occurrence of a set of
admissible events in the next few steps leads the system to a
deadlock state. If so, the controller avoids such an undesirable
evolution through controlling controllable events. If not,
events for the next step are allowed to take place and the
controller repeats the above procedure. Wonham et al.[5]
studied the deadlock free supervisory control problem in the
context of finite state machine models. They synthesized the
supervisory control for discrete event processes by imposing
restrictions on the occurrence of controllable events. Two
types of deadlock free supervisors were investigated: the total
deadlock free supervisor and Σ0 deadlock free supervisor. The
latter prevents the process from reaching a state under which
events in a set Σ0 can no longer occur, while the former has Σ0
as the set of all admissible events.
In operating a FMS, it is also desirable to make the FMS
capable of processing all types of jobs repetitively in addition
to keep the FMS live in terms of PN modelling formalism. If
a FMS is live, then it is deadlock free but not vice-versa [3].
In this paper, the deadlock avoidance controller (DAC) is
driven by a class of PN models which combines the ideas of
[1,4] and consists of two ingredients:
a) A bottom-up approach for the synthesis of a controlled

Petri net (CPN) model for the production flow;
b) A liveness condition for the above-mentioned model,

under the circumstances of underlying the potential peril
path (PPP) in the PN model by respecting the concept of
minimal resource requirements.

The resultant deadlock avoidance algorithm in conjunction
with the mentioned PPP avoidance policy constitutes a DAC
as depicted in Fig.1.

Fig.1 DAC controller for a FMS

Production flow characteristics

control
actions

Output
(Finite products)

Input
(Raw material)

permissible
actions

GPN

PPP
avoidance
algorithm

FMS

DAC

The construction of a CPN model starts wits independent PNs
to represent the manufacturing processes of individual jobs
and the manufacturing activities of individual manufacturing
resources. These jobs and resources are merged into a global
PN (GPN) according to their common manufacturing
activities. The production flow characteristics of the FMS are
incorporated into the GPN to form a CPN. A deadlock
avoidance controller of the FMS includes a control policy that
allows, in accordance with the PPP avoidance algorithm, the
occurrence of concurrent production events, by respecting the
concept of minimal resource requirements, so that the CPN
stays live, and hence deadlock free. As it is well known the
deadlock in PNs is related to siphons [6], we use control
places to prevent the total marking in the siphons from
becoming zero [7]. Finally, note that when the PNs are
bounded and the initial marking is fixed, it is possible to
transform the problem from the PN framework to finite
automata, and so to solve the problem by using finite
automata methodologies, such as supervisory control
technique. Furthermore, the use of PNs in deadlock
prevention may be preferable because deadlock often occurs
in systems with concurrencies, which are better modelled by
PNs.

2. A Global Petri Net Model

In this section we describe the construction of the GPN given
in Fig.1 that consists of resource subnets, job subnets and
exogenous control given by an algorithm, in order to describe
the PPP avoidance algorithm in the context of FMS.

A. The resource subnets

Let R be the set of resource types in a FMS. We assume that a
unit of resource can only be involved in one operation at a
time. We model such an activity by a PN, G = (P,T,F,M0)
where P is a finite set of places with cardinality |P| and places
represent the state of the resources, T is a finite set of
transitions which represent the operations of the respective
activity, F is a finite set of transitions arcs, M0 : P → Z|P| is the
initial marking of the PN with Z as the set of positive
integers. The marking indicates the number of tokens in each
place and is a state of the system. The readers may refer to [8]
for definitions of the PNs. Since we consider renewable
production resources, such as machines, buffers, conveyors,
the PN of the k-th activity starts with place pk(0) = p(0) (p(0)
represents the resource idle state), has a transition input arc
between pk(i-1) and tk(i), i = 1, …, n, (pk(i-1) and pk(i)
represent the state of the resource before and after transition
tk(i) respectively, and n is the number of distinct operations in
the k-th activity).
As each transition tk(i) has one input place and one output
place, such a PN is called sure. We define a merging
operation, ڤ, as an operation that combines two PNs (PN1
and PN2) into a new PN, PNnew, by merging each pair of
common elements (places, transitions, arcs) between PN1 and
PN2 into a single element; the remaining distinct parts
between PN1 and PN2 are kept unchanged and become parts

of PNnew. We denote PNnew = PN1 ڤ PN2. The number of
tokens in a resource subnet corresponds to the capacity of the
respective resource; therefore the token flow in the GPN
represents the state transition of the resources. We denote the
resource subnet of type - r resource as PNr, where each
transition in PNr maintains exactly one input place and one
output place; PNr therefore is a sure net [7,8].

B. The job subnets

A job subnet is constructed in a similar manner to that of a
resource subnet. In constructing a job subnet for one type job,
we again use a transition to represent an operation while using
a place to represent a job state. There is a source transition for
the k-th job tk(1), that generates processing tokens which
model the first operation that releases a type of one job into
the production system. We assume that the production
process of the job type j consists of a sequence of transitions
tj(1), tj(2), ..., tj(k) of k activities. The output place for the last
transition tj(k) is a sink place that represents an infinite
storage of finished jobs. We denote a job subnet as PNj = (Pj,
Tj, Fj, mj), where mj is the number of type j jobs that are being
processed. Such a job subnet usually is an acyclic marked
graph, since the production process is acyclic, and each place
has one input and one output transition; PN therefore is a sure
net. Tokens in a job subnet certain that operation holding
resources are in process.

C. Global Petri net

By merging resource and job subnets we construct the Global
Petri net (GPN) that models the interactions among
operations, resources and jobs in the FMS by:

GPN = PNr ڤ PNj (1)

In a FMS there are control points that can be applied to jobs and
their operations in order to control the production flow. In terms
of PN we add to each transition of the GPN that corresponds to a
controlled operation, a control place pc and a transition input arc
between pc and the transition. The control places model the
control conditions in a FMS, respectively incorporate exogenous
conditions for enabling the associated transition. A controlled
transition (e.g., a transition with an input arc from a control
place) may be fired as many times as the number of tokens in the
control place. A control policy [5,6] is a mapping that generates a
sequence of control actions for the GPN based on its initial
marking M0, which evolves in a set of admissible markings. We
exemplify the construction of a GPN (by merging the resource
subnets with job subnets): Consider the system depicted in
Fig.2., which consists of two machining tools (M1 and M2), two
robot arms, and two conveyors.
Each machining tool is serviced by a dedicated robot arm,
which performs load and unload tasks. One conveyor is used
to transport work pieces, a maximum of two at a time. The
other conveyor is used to transport empty pallets. There is one
pallet available in the system. Each work piece is machined
on M1 or M2, in this order.

Fig.2 An example of a FMS

Fig.3 shows the two resource subnets which correspond to the
jobs of M1 and M2. Places p1, p2, p3 model the resources of
raw pieces and pallets; the M1 and M2 availability, and also
final products and empty pallets, respectively. Places p4 (p6)
and p5(p7) model the robot 1 and robot 2 availability (when
marked), respectively.

Fig.3 Resource subnets: (a) for M1; (b) for M2.

In Fig.4 are depicted the two job subnets of the example given
in Fig.2. We notice that the two machines are complementary,
i.e., they execute alternatively the same jobs, in order to
ensure the necessary throughput of the system.

Fig.4 Job subnets: (a) for M1; (b) for M2.

Following the construction algorithm of a GPN, as it is
described above, we obtain the global Petri net (GPN) model
of the FMS, in Fig.5.

Fig.5 The GPN model for the example given in Fig.2.

We notice that in Fig.5, in order to ensure the liveness of the
GPN model, we added some arcs (drawn with dotted lines)
which by creating a control mechanism kanban, ensure the
verity of the relation [6] (i.e., the PPP avoidance algorithm):

Σ M(p) ≥ 1 (2)

Where M(p) is the marking of the places in the siphon S, and
the relation (2) must be verified for all markings M reachable
from the initial marking. We apply relation (2) to potential
peril paths, PPP, (i.e., kanban structures, which are
constructed as shown in Fig.5) which represent, obviously, an
extension of syphons (a syphon is a set of places S ≠ Ø such
that • S ≤ S •, where • S is the input transition of S [7]). In [6]
it is proven that if relation (2) is true, then the respective
syphon is active, i.e., liveness. It can be easily observed that
kanban mechanisms ensure the verity of relation (2), so that
PPP such defined are liveness, and they characterize the GPN
structure.
For the GPN model of a FMS there is one problem to be
solved: evaluating the system performance.

3. Performance evaluation of GPNs

In order to study the performance of a system, the GPN model
built in the previous selection is extended to include the
notion of time [5,6].
In such extended GPN, an execution time τ is associated with
each transition. When a transition initiates its execution, it
takes τ units of time to complete its execution. In this paper
we extend the performance evaluation given in [7] to GPN
characterized by the PPP structures. We mention a theorem
given in [7], which states the basis of our algorithm:
Theorem: For a sure Petri net, the minimum cycle time
(maximum performance) C is given by:

C = max {
kN

kT
, k = 1,2,…,n} (3)

Where ∑

∈

=

kLit

iτ Tk = sum of the execution times of the

transition in circuit k

∑

∈

=

kLip

iM Nk = total number of tokens in the places in circuit k

n = number of circuits in the net
Lk = loop (circuit) k

Because a GPN is a sure net, we can apply this theorem to our
model of a FMS. A drawback of this approach is that all
circuits in the net must be enumerated. In the design of FMS,
the required performance is usually given. We give the next
procedure for verifying system performance, and we
exemplify its extension on a GPN, i.e., for the GPN given in
Fig.5, where the firing time τi of transitions ti, i = 1,2,3, are: τ1
= 5, τ2 = 4, τ3 = 2 units of time (u.t.).

Conveyors

Machine 1

Pallet

Raw pieces

Pallet

Final products

Machine 2

Robot 1 Robot 2

t1 t2 t3

P3 P2 P1

P4 P5

a)
P3 P2 t1 t2 t3

P1

P6 P7

b)

t1 t2 t3
P3 P2 P1

a)
t1 t2 t3

P3 P2 P1

b)

t1 t2
t3

P3 P2 P1

P4 P5

P6 P7

A. Algorithm for verifying FMS performance:

1) Express the token loading in an n x n matrix P, where n is
the number of places in the GPN model of the FMS. Cell (pi,
pj), i ≠ j, in the matrix equal q if there are q tokens in place pi,
and place pi is connected directly to place pj by a transition;
otherwise (pi, pj) equals o. Matrix P of the example system in
Fig.5 is shown in Fig.6.

p1 p2 p3 p4 p5 p6 p7























0000100
0000010
0000100
0000010
0000000
0000000
0000010

Fig.6 Matrix P for GPN given in Fig.5

2) Express transition time in an n x n matrix Q. Cell (pi, pj), i
≠ j, in the matrix equal to τi if pi is an input place of transition
i and pj is one of its output places. Cell (pi, pj) contains
symbol x if pi and pj are not connected. Matrix Q for the
example system is given in Fig.7.

p1 p2 p3 p4 p5 p6 p7























xxxx4xx
xxxxx5x
xxxx4xx
xxxxx5x
2x2xxx2
x5x54xx
xxxxx5x

Fig.7 Matrix Q for GPN given in Fig.5

3) Compute matrix CP-Q (with n-w = ∞, ∀ n∈Rt) then use
Floyd’s algorithm to compute the shortest distance between
every pair of nodes using matrix CP-Q as the distance matrix.
There are three cases:
a) All diagonal cells of matrix CP-Q are positive (i.e., CNk-

Tk > 0), the performance is higher than the given
requirement.

b) There are diagonal cells equal to zero and positive, the
system performance meets the given requirement.

c) Some diagonal cells of matrix CP-Q are negative; the
system performance is lower than the given requirements.

In the example, C = 11, so that CP-Q is given in Fig.8.
p1 p2 p3 p4 p5 p6 p7

∞∞∞∞∞∞
∞∞∞∞∞∞
∞∞∞∞∞∞
∞∞∞∞∞∞

∞∞∞∞
∞∞∞∞∞
∞∞∞∞∞∞

7
6

7
6

2-2-2-
5-4-

6

Fig.8 Matrix CP-Q for GPN given in Fig.5

After applying Floyd’s algorithm to find the shortest distance
between every pair of places, as it can easily be seen from
Fig.8, the diagonal entries of matrix CP-Q are positive, and the
rest of them are zero. This implies that the performance
requirement of C = 11 is satisfied. Since cells (p1, p1), (p2, p2)
and (p3,p3) are zero’s, the bottleneck circuit is p1t1p2t2p3t3, as it
is proven in [6].

4. Conclusions

In this paper we have discussed a systematic method to build
the Petri net model of a controller that keeps a FMS live and
we have also discussed an algorithm to evaluate and verify
the performance of FMS. We first adapted a bottom up
approach to develop a kanban controlled Petri net model, i.e.
global Petri net – GPN, of a FMS and we delineate the
minimal resource requirements as a necessary and sufficient
condition to keep the GPN live.
The performance evaluation of the GPN model was also
considered by adopting an algorithm for the GPN model
proposed here. In the case of general Petri nets models, the
verification of system performance no efficient heuristics
methods are known. Further research will focus on this
attempt. Colored Petri nets seem to permit a much more
flexible approach. Further work will investigate this path.

References

[1] R. Zurawski, M. Ch. Zhon, “Petri nets and industrial

applications: A tutorial “, IEEE Trans. On Ind. Electr., Vol. 41,
no. 6, pp. 567-583, 1994.

[2] N. Viswanadham, “Composite performance dependability
analysis of cellular manufacturing system”, IEEE Trans. On
Rob. And Autom., Vol.10.

 [3] F. S. Hsich, S. Ch. Chang, “Dispatching driven deadlock
avoidance controller synthesis for flexible manufacturing
systems”, IEEE Trans. On Rob. And Autom., Vol. 10, no. 2, pp.
196-209, 1994.

[4] M. D. Jeng, F. Di Cesare, “A review of synthesis techniques for
Petri nets, Proc. Of Rensselaer’s Second Intern Conference on
CIM”, Troy, New York, May 20-22, pp. 348-355, 1990.

[5] K. P. Valovanis, “On the hierarchical modelling analysis and
simulation of FMS with extended Petri nets”, IEEE Trans. On

Syst. Man. and Cybernetics, Vol. 20, no. 1, pp. 94-110, 1990.
[6] C. Ramamoorthy, G. Ho, “Performance evaluation of

asynchronous concurrent systems using Petri nets”, IEEE Trans.

On Soft Eng., Vol. SE-6, no.5, pp. 440-448, 1980.
[7] M. Iordache, J. Moody, P. Antsaklis, “Synthesis of deadlock

prevention supervisors using Petri nets”, IEEE Trans. on Rob.

And Autom., Vol. 18, no. 1, pp. 59-68, 2002.
[8] A. Aybar and A. Iftar, “Overlapping decompositions and

expansions of Petri nets”, IEEE Trans. on Rob. and Autom.

Contr., Vol. 47, no. 3, pp. 511-515, 2002.
[9] E.Mengui, J.L.Boimond, L.Hardouin, J.L.Ferrier, “Just in time

control of event graphs: update of reference input, presence of
uncontrollable input”, IEEE Trans. on Autom. Contr., vol.45,
no.9, pp.2155-2159, 2000.

p1
p2
p3
p4
p5
p6
p7

p1
p2
p3
p4
p5
p6
p7

p1
p2
p3
p4
p5
p6
p7

