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Abstract 
 

   Security communication systems composed of highly 

reliable components may have few if any failures while 

undergoing heavy testing or field-usage. This paper 

combines (i) analysis of randomized pulse modulation 

schemes based on finite Markov chains with (ii) 

security communication systems failure as a rare event 

with a finite-state, discrete-parameter, recurrent 

Markov chain that models the failures. An application 

of these results would be (i) in the analysis of 

randomized pulse width modulation implemented into 

the command of the railway data transmitter for the 

traffic security, and (ii) in the analysis of these 

system`s reliability. 
 

 

1. Introduction 
 

   Security communication reliability model holds 

observed success/failure data or estimates the 

component reliability within the framework of 

probability models in order to predict patterns of future 

performance. The probability distributions for the 

number of failures and the failure occurrence within a 

specified time (e.g., mean time to failure: MTTF) are 

often adapted from hardware reliability theory [1] or 

justified empirically [2]. By failure as a rare event [3] 

we mean that its probability of occurrence is greater 

than zero but smaller by at least several orders of 

magnitude than non-failure events in security data 

communications. In this situation, the MTTF is a large 

number. Thus, security data communications which 

receive heavy usage according to established usage 

distributions are a candidate for the treatment of their 

failures as rare events. Intuitive definitions and 

convenient computations are attributes of the Markov 

chain for work with rare events. The Markov chain 

provides not only a convenient definition of a rare 

event, i.e., a visit to an abnormal fail-state, but also a 

direct measure of rarity using steady-states 

probabilities. In our approach, a discrete-parameter, 

finite-state Markov chain [5] is used to represent both 

security data communications failures (as transitions to 

a rare fail-state) and randomized pulse width 

modulation schemes of data transmitter. 

This approach has a few advantages: the randomized 

modulation of switching in power converters reduces 

filtering equipments and allows an explicit control in 

time domain performance. Randomized modulation is 

very effective for narrow band constraints [6]; 

therefore it is proper to be implemented into the 

command of the railway data transmitter for the traffic 

security. This paper is organized as follows: Section 2 

describes the working principles of security railway 

data transmitter CN-75-6. Section 3 deals with the 

Markov chains formalisms of synthesis in randomized 

modulation. Section 4 gives an example of randomized 

modulation governed by periodic Markov chains, and 

introduces a new structure of complex periodic Markov 

chain. Section 5 estimates the reliability of this 

approach, with an example, by framing it into a model, 

respectively the reliability Markov chain model 

(RMCM). Conclusions synthesize the results obtained, 

both for randomized modulation Markov model and for 

its reliability estimation.  

 

2. Security railway data transmitter 
 

   Typically, a data transmitter consists of a logic 

command and a switching power converter. The 

switching power converter uses only switching devices, 

energy storage elements, and relays an appropriate 

modulation of the switches to convert the available a.c. 

or d.c. voltage (current) waveforms of the power source 

into the a.c. or d.c wave forms required. The switches 

are generally semiconductor devices: diodes, thyristors, 

IGBT, etc. A switching scheme involves generating a 

switching function f(t), which by definition has the 

volume one when the switch is conducting and the zero 

value otherwise. This is schematically indicated in 

figure 1. 
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Since power converters generally operate in a periodic 

steady state, transmitter wave forms of interest (in the 

electronic code transmitter CN-75-6) are typically 

periodic functions of time, in the steady state, as 

illustrated in figure 2. The structure of the codified 

pulses of the CN-75-6 transmitter involves 10 sine 

waves of 75 Hz frequency followed by a pause 

virtually carrying a multiple of 10 sine waves of 75 Hz 

frequency. Because the information is carried by 

pauses, the CN-75-6 decoder counts the number of sine 

waves periods which fits the length of the pause. 

The resulted number, which must be a multiple of the 

sinusoids, indicates a specific command for the railway 

installations, such as a color displayed by the traffic 

lights. As shown in figure 2 the switching function f (t) 

determines the structure of the codified pulses g (t) of 

the CN-75-6 transmitter [4].  The function f (t) given 

by the controller (figure 1) reflects steady-state wave 

forms for the controlled voltages, respectively for the 

controlled code. 

 

 

   

  

  

  

   

 

 

 

Figure 1. Schematic representation of a switching 

transmitter 

 

 

 

 

 

 

 

 

 

Figure 2. Switching functions of the electronic code 

transmitter CN-75-6 

 

 It is well known that the average value or duty ratio D, 

of f (t) usually determines the nominal output of a 

d.c./d.c. converter, while the fundamental component 

of f (t) usually determines the output of a d.c./a.c. 

converter; similar statements can be made for a.c./d.c. 

or a.c./a.c. converters. 

Converters wave forms that are periodic have spectral 

components only at integer multiples of the 

fundamental frequency.  

The allowable harmonic content of some of these 

waveforms is constrained: our circuit, type CN-75-6, 

ideally should have only the 75Hz fundamental 

component present. In this case, stringent filtering 

requirements may be imposed to the railway insulation 

resistance, and on the power converter. As the use of 

pulse width modulation (PWM) in power converters 

controlled by microprocessors evolved, new methods 

became available to address the effects of 

electromagnetic interference.  

While an effort was directed toward the optimization of 

deterministic PWM waveforms, an alternative in the 

form of randomized modulation for d.c./a.c. and 

a.c./a.c. conversion is based on schemes in which 

successive randomizations of the periodic segments of 

the switching pulse train are statistically independent 

and governed by probabilistic rules. These schemes are 

denoted as stationary [3], [19].  

In this paper we describe an approach to the synthesis 

of this class of stationary randomized modulation 

schemes that enables explicit control of the time-

domain performance of the CN-75-6 railway data 

transmitter, used in the Romanian railways system.  

We notice that our approach can easily be implemented 

to a large class of data transmitters with PWM 

waveforms, using stationary randomized modulation 

for increasing the security of transmissions. 

 

3. Switching synthesis with Markov chains 
 

   The basic synthesis in randomized modulation is to 

design a randomized switching procedure that 

minimizes given criteria for spectral characteristic of 

f(t), while respecting time-domain behavior constraints. 

Practically, optimization procedure assumes the 

minimization of discrete spectral components (denoted 

as narrow-band optimization), and the minimization of 

signal power in a given frequency range (denoted as 

wide-band optimization, [5]). The case of pulse trains 

specified by periodic Markov chains is denoted as 

ergodic cyclic [4], [5]. We assume that the state of the 

chain goes through a sequence of n classes of states Ci , 

occupying a state in each class for an average time σi, i 

= 1, ..., n. The time-average autocorrelation [6] of a 

random process f(t) is defined as: 

 

( ) dt)]t(f)t(f[E
w2

1
limR

w

wn
f ⋅+⋅= ∫−∞→

ττ       (1) 

 

Where the expectation E[.] refers to the whole 

ensemble [.]. The contribution that states the Markov 

chain belonging to the class Ck, with the time-averaged 
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autocorrelation (1) is scaled by τk / ∑
=

τ
n

1i

i , where iτ is 

the expected time spent in the class Ci before a 

transition into the class Ci+1.  

We define P as the nxn state-transition matrix, and its 

(k, i)th entry is the probability that at the next transition 

the chain goes to state i, given that it is currently in 

state k.  

Each row of P sums to 1; P is thus a stochastic matrix, 

and therefore has a single eigenvalue λi = 1, with 
corresponding eigenvector 1n = [1 1 ... 1], and all other 

eigenvalues with module strictly less than one.  

It can be shown [1], [17] that after a possible 

remembering of the states, the matrix P for a periodic 

Markov chain can be written in a block-cyclic form.  
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Let PP denote the product of sub matrices of P: PP = 

Pn1·…· P23·P12, and let vi denote the vector of steady-

state probabilities, conditional on the system being in 

class Ci. Then, we have: 

 

     Pii Pv*V ⋅=                (2) 

 

The average time spent in class Ci is: 

 

∑ ⋅=
k

k
*
ki V ττ                (3) 

 

We notice that in relation (3) the summation refers to 

all states in class Ci. Let To = ∑
=

n

1i
iτ and let Өi = diag 

(Vi*). If the first pulse belongs to the class i, then the 

pulse τi + τ belongs to the class (i + m) / mod n, where 

m represents the number of transitions between pulses 

τi and τi + τ. 
We mention that the average duration of some classes 

may be null, which means that these classes (with 

corresponding states) are skipped [13-15].  

This approach allows us to build a simplified Markov 

chain model (we present this assumption, which we 

believe to be novel, in the next section).  

 

When we add the contribution of all classes to the 

average power spectrum (scaled by the relative average 

duration of each class), the result can be written as 

follows [4]: 
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Where T* is the greatest common divisor of all 

waveform duration, 1n is an n x 1 vector of 1 and Ui is 

the vector of Fourier transforms of waveforms assigned 

to states in class Ci. 

The matrix SC has a Toeplitz structure, with (k, i)th 

entry:                   

( ) ( ) ( )( ) ( ) ( )fUffIfU
T

fS ii,k
1

k
T

k
0

i
i,ck ⋅⋅−⋅⋅= − ΛΛ

τ
 (5) 

 

Where Λk is a product of n matrices:  

Λk=Qk-1,k, …, Qk,k+1, and Λk,j=Qk,k+1, …, Qi-1,i .    

Where Q is a matrix n x n whose (k, i) entry is Qk,i(σ) = 

Pk,iδ(σ-τk). 

 

Also, the (k, i)th entry of Sd is given by relation: 

                                       

( ) ( ) ( ) ( )fUVVfU
T

fS i
T

ik
T
k

0

i
i,dk ⋅⋅⋅⋅=

τ
            (6) 

 

Analogous with the notion of truncated Markov chains 

with absorbing states [6], we propose a simplified 

model of Markov chains for random modulation.  

 

The proposed Markov chain X
(m)
 has the states 

{m,m+1, …} aggregated into an absorbing class of 

states, which has transition matrix (m)T satisfying:  
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Since (m)P is irreducible for all m, it follows that X
(m)
 

constitutes an irreducible Markov chain for all m [6].  

 

The states {1,…, m-1} form a transient set and m is an 

absorbing class of states. The n-step transition 

probability matrix (m)T
n
 can be written as: 
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Where (m)P
n
 = (m)pij

n
 = pij(n). 

The transition probability between realizable classes of 

states is 1.  

This probability also indicates the priorities between 

the states of the system. 

 

4. Example of pulse width modulation 

governed by periodic Markov chains 
 

   In this example, applicable to railway data transmitter 

CN-75-6, our goal is to generate a switching function 

in which blocks of pulses have deterministic duty 

ratios: [0.75, 0.5, 0.25]. The periodic Markov chain 

shown in figure 3, with six states divided to three 

classes, is an example of a solution to such a problem 

[6], [7]. A short (duration 3/4) and a long (duration 

5/4) cycle is available in each of the four classes.  

According to the theoretical approach in the previous 

paragraph, we build a simplified Markov chain in 

figure 4.  

The Markov chains in figure 3, respectively in figure 4 

have the same transition probabilities between states Si, 

i=1,…,8 of classes Cj, j=1,…,4. We notice that the 

Markov chain in figure 4 is more intuitive and tidy than 

the one in figure 3.  

The transition probabilities equal to 1 in figure 4 are 

conditioned by the existence of transition probabilities 

between the states of different classes. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 
  

Figure 3. Classic Markov chain for modeling the 

switching example 

 

The above given duty ratios in the present example and 

modeled with Markov chains in figure 3, respectively 

in figure 4, represent the switching between colors red, 

yellow, red, green displayed by railway traffic lights 

commanded by data transmitter CN-75-6.  

We analyze this Markov chain with equation (4) and 

we compare the theoretical predictions with the 

estimates obtained in Monte Carlo simulations.  The 

agreement between the two is quite satisfactory: the 

theoretical prediction for the impulse strength at f = 4 

is 0.0036, and the estimated value is 0.0037. 

The Markov chain represented in figure 4 allows 

dealing with many more classes of states because 

graphical representation is simplified and can 

significantly improve the tractability of the 

optimization of the Markov chains with many states. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Proposed Markov chain for modeling the 

switching example 

 

 

5. Reliability estimation of pulse width 

modulation with periodic Markov chains 
 

   Visits to rare state of failure (F) in recurrent Markov 

chains are some events. The Markov chain for 

reliability model has at least three states [7, 8]: starting-

state S, working state W, and fail state F. State 

sequences are realizations of reliability Markov chain 

model (RMCM). A realization from S to first 

occurrence of W represents a single successful 

execution cycle of data transmission. A transition from 

any state to F represents a failure to data transmission.  

The probabilities on arcs in RMCM are the values 

estimated for the usage profile and component 

reliabilities expected in practice [9]. We notice that if 

state i 
�
RMCM i ≠ F, has been visited ni times and 

exited without failure, then the probability of failure at 

state i is no greater than 1/(ni + 1). Let random variable 

nF be the number of visits to F in a randomly generated 

realization of n transitions starting in a state S.  Let 

λ=E(nF) be the mean value of the probability low of nF. 

Let P = [pij] denote the RMCM’s transition probability 

matrix. The RMCM have all states reachable from S by 
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traces with nonzero probability and arcs from both F 

and W to S with PFS = PWS = 1, so that a successful or 

unsuccessful path terminated in W, respectively in F 

state causes an  immediate restart in initial state S. 

RMCM’s steady-state probability distribution Π = [πS, 

…, πF] is the unique solution of  Π = ΠP where Σ Πi = 1 

and   πi > 0 is the limiting relative frequency of 

occurrence of state i as a count transition, e.g., 

recurrence time, [4]. 

 Adopting a Poisson law with parameter λ, 

developments in small number laws stress that P0(λ) is 

an approximation and compute an upper bound for 

measuring the distance between P0(λ) and the 

probability law L(nF).  

The total variational distance dTV[L(nF), P0(λ)] is 

defined as: 

 

 ( ) ( )[ ] ( )( ) ( )( )APAnLsupP,nLd 0FA0FTV λλ −=  (9)   

 

for events A in the sample space [10], where P0(λ) is 

the Poisson distribution with parameter λ �
Since Π F equals the limiting relative frequency of state 

F, for large n we have: 
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We may approximate for large n, and rare state F: 
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We notice that λ
�
n 
.
 Π F  is the approximate parameter 

for a full sequence of transition, not per transition. 

Since the mean sequence length is mSS transitions, the 

expected count of transitions between visits to F is [4, 

11]:  
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We exemplify this approach on the three state Markov 

chain (RMCM) given in figure 5. This RMCM 

corresponds to the Markov chain given in figure 4, 

where we added the fail state F associated to the states 

Ci, i = 1,2,3 associated to the classes in the Markov 

chain model for pulse width modulation scheme 

discussed in section 3. By colligating the RMCM in 

figure 5 with the Markov chain in figure 4, we notice 

the transition probabilities for the ordinary usage-states 

given in figure 4 (pij) and the small probabilities PciF , i 

= 1,2,3 in figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Five state RMCM associated to the 

Markov chain in figure 4 

 

Given that for highly reliable security communication 

systems we may have 0 
�
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�
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.
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presume that for PciF ≈ 10
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vector is:  
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The vector of mean recurrence time is:  
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The vector of the expected number of occurrences of 

states between transitions to non-rare state S is: 
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  The vector of the expected number of occurrences of 

states between transitions to rare state F is:  
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the upper bound 0,903 
. 
10

-5
, where k = 0,1,2,3. The 

MTTF is mFF 
�
 9
.
10

4
 for pCF = 10

-4
. 

 

 

6. Conclusions 
 

Our paper focuses syntheses results for randomized 

modulation strategies achieved with Markov chains, 

suitable for power converter, for example the one used 

in the railway data transmitter CN-75-6. 

Randomized modulation switching schemes 

governed by Markov chains applicable to d.c./a.c. or 

d.c./d.c. converters have been described.  

We notice that most of the previous results in which 

randomizations of the switching pulse train are 

statistically independent and governed by invariant 

probabilistic rules. 

While these implementations tend to be very successful 

in achieving certain kinds of spectral shaping in 

frequency domain, they fail in short offering time-

domain performance guarantees concerning the 

switching process. 

 This is objectionable in many cases, for example when 

accumulated deviations of the randomized switching 

waveform from the nominal waveform determine errors 

in data transmission.  

This problem, together with the lock of a widely known 

and accepted analysis framework for randomized 

switching waveforms, impediment the wider use of 

randomized modulation. 

In this paper we describe a class of stationary 

randomized modulation schemes that allow control of 

the time domain performance of randomized switching, 

together with the spectral shaping in the frequency 

domain. In order to do this, the switching signal 

comprises a concatenation of distinct waveforms 

segments chosen in sequence according to a Markov 

chain model. 

Our representation for complex periodic Markov 

chains we believed to be novel.  

We also believe that this new model offers a new 

perspective for the spectral characteristics and other 

associated waveforms in a converter to the probabilistic 

structure that governs the dithering of an underlying 

deterministic nominal switching pattern.     

Further research will continue to focus on 

minimization of one or multiple discrete harmonics. 

This approach corresponds to cases where the narrow-

band characteristics corresponding to discrete 

harmonics are harmful, as for example in the railway 

traffic security.  

We also discussed results in rare events for security 

communication system based on finite-state, discrete-

parameter, recurrent Markov chain, here entitled 

reliability Markov chain model (RMCM). The chain 

provides a simple definition of failure as a rare event, 

respectively as a failure state F for which the steady-

state Π F is orders of magnitude smaller than Π K for k �  
F, usually states of RMCM.  

Poisson law distribution bounds the transitions to a 

rare-fail state F in arbitrarily large size RMCM.  

Further research will focus on improvement of the 

analytic capabilities of RMCM in the study of extreme 

values of rare events [21-25] when failure is infrequent 

and MTTF is long.  
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