
Safety Discrete Event Models for Production 

Lines with Shared Resources 
 

C. Ciufudean*, A.B. Larionescu*, A. Graur*, C. Filote*, C. Petrescu**
* "Stefan cel Mare" University of Suceava, 1 Universitatii Str., Suceava, Romania 

** Electrical Engineering Co., 313 Splaiul Unirii Bvd., Bucharest, Romania 

 

 
Abstract—In this paper we study the problem of deadlock 

avoidance of production lines with shared resources. We use 

the Petri net model for production lines and a restrictive 

policy which prevents some enabled transition from firing 

for avoiding deadlock in the system. This is the safety 

control for non-stochastic discrete event systems. We 

generalise this notion of safety to the setting of stochastic 

discrete event systems, modelled as Markov chains. We 

propose a restriction policy for this generalised case. 

 

I. INTRODUCTION 

Given a model of a production line and a specification 

of the desired behaviour for the controlled system, the 

main objective to achieve a certain throughput is to 

synthesise the appropriate controller to realise the 

specified behaviour. In general production lines, raw 

products of various types enter the system at discrete 

point of times and are processed concurrently. Usually, 

these systems shares a limited number of resources such 

as machines, robots and buffers, and each product has a 

particular operation routing that determines the order in 

which resources must be assigned to the product. The 

concurrent flow of multiple products in a system, which 

all competes for a finite set of resources, can lead to a 

deadlock situation. In such resource-shared systems, 

deadlocks constitute a major issue to be addressed at the 

design and operation phases. Many efforts have been 

focused on the problem of deadlock in a Flexible 

Manufacturing System (FMS) [1], [2], [3]. Some of them 

adopted Petri net (PN) models as a formalism to describe 

FMS’s and to develop deadlock avoidance policies. 

Banaszak and Krough [4] considered a class of Petri net 

model and proposed the deadlock avoidance algorithm 

(DAA) for FMS with concurrently competing process 

flows. Minoura and Ding [2] developed a method based 

on the untimed PN formalism to synthesise deadlock 

avoidance controllers that keep an FMS live and may 

achieve a high resource utilisation under a given 

dispatching policy. Ezpeleta et al. [3] solved the deadlock 

avoidance problem using the concept of siphons. Our 

paper studies the important issues of deadlock avoidance 

in production lines using PN and Markov chains based 

techniques. First we present [4] the conditions in which 

the system is in a deadlock situation. Then we present a 

restriction policy to avoid the deadlocks. In some cases, 

despite the fact that this policy is minimally restrictive, a 

deadlock may occur in an extreme case, when the 

resources involved in a concurrent operation are 

simultaneously out of order. This case is studied with a 

Markov chain because the occurrence of breakdowns in 

system represents a stochastic process. An example will 

illustrate our approach.      

 

 II. PN MODELS OF CONCURRENT OPERATIONS 

Let us consider a production line with m types of 

resources, denoted by r1, r2, …, rm and n different types of 

products, denoted by q1, q2, …, qn. 

The manufacturing process of each product is supposed 

to be defined as a sequence of resource utilisation. We 

denote by u(qi) the sequence corresponding to product 

type qi. First, we adopt a PN model for the production 

line which is similar to [4]. There are four workstations 

W1, W2, W3 and W4 served by a transport system S and two 

types of products q1, q2. Each workstation has an input 

buffer to hold products to be processed and an output 

buffer to hold products for which the process step has 

been completed. Each buffer has a capacity of five. 

Suppose that there is a single transport resource in S and a 

single machine Mi in workstation Wi, i = 1,…, 4;  then the 

set of resources is R = {I1, …, I4, O1, …, O4}.  

Labels I1,…, I4 denote the input buffers, and O1, …, O4 

denote the output buffers for Wi. Suppose q1, q2 are 

processed, respectively, by sequencing machines M3, M1, 

M2, M1 and M2, M3, M4 in order. The process sequences 

are specified as follows: u(q1) = (I3, O3, I1, O1, I2, O2, I1, 

O1), and u(q2) = (I2, O2, I3, O3, I4, O4). Transition firing 

corresponds to one process step completing and the next 

process step starting. The tokens in place p
i

0
 
represent the 

number of products of type qi to be initiated and tokens in 

places p i

Li 1+
 represent the number of completed products 

of qi.  

Li is the length of the sequence for product qi. Places 

p i

1 , p
i

2 , p
i

Li
 correspond to process steps, and each step 

requires only one resource. 

A resource place is assigned to each type of resource r, 

denoted by ar, tokens in place ar indicate available 

resources of type r, the initial marking is defined as 

m0(ar)=Cr, where Cr is the available capacity of type r. 

The process step p i

j  using resource r, denoted by 

R(p i

j )=r, is represented by an arc from ar to t
i

j  and an arc 

from t
i

j 1+ to ar , i = 1, …, n, j = 1, …, Li.  

Fig. 1 shows the model for our production line. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. PN model of a production line 

 

The complete PN model for a production line is 

described by:   

P = Pp ∪ Pr       (1) 

where: 

Pp = {p
i

j , i = 1, 2, …, n , j = 0, 1, …, Li+1}  (2) 

 

Pr = {ar
i
, i = 1, 2, …, m }    (3)  

 

T = { t
i

j , i = 1, 2, …, n, j = 0, 1, … Li+1}   (4) 

 

I = {(p
i

j ,t
i

j 1+ ), i = 1, 2, …, n , j = 0, 1, …, Li} ∪ 

∪ {( aR(p
i

j
), t

i

j ), i = 1, 2, …, n , j = 1, …, Li}  (5) 

 

O ={( t
i

j ,p
i

j ), i =1, 2, …, n , j = 0, 1, …, Li+1} ∪ 

∪ {(t
i

j 1+ , aR(p
i

j
)) , i = 1, 2, …, n , j = 1, …, Li}  (6) 

 

m0(p) = Cr, for pr ∈ {
ir

a , i = 1, 2, …, n}, otherwise 

m0(p)  =  0. 

For our production line i = 1, 2; j = 1, 2, …, 9; Cr = 20.  

When one or more sorts of products enter a production 

line, it is possible to reach a deadlock situation. For 

example, if the marking m of the PN model in Fig. 1 is 

defined by: 

 

            5, if  p∈ { }
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m(p) =                       (7) 

            0, otherwise  

 

then transitions t 14 , t
1

5 , t
1

6  and t
1

7  can not fire and are in 

deadlock. We consider for deadlock the next definition 

[4]: 

Given sets of resources R and products Q and a PN, G, 

a set of transitions D is said to be in deadlock for a 

marking m∈RM(G, m0) if: 

1) all transitions in D are process enabled under the 

marking m, and  

2) no transition in D is resource enabled for any 

marking m’∈RM(G, m).  

We note that from definition of deadlock for a PN G, if 

transition sets D1 and D2 are in deadlock for a marking 

m∈RM(G, M0), then D1∪D2 is in deadlock for the 

marking m. 

  

3 I a   

1 O a   

2 O a   
4 O a   

4 I a   
2 I a   

1 I a   

3 O a   

1 
5 p   

1 
6 p   

1 
0 t   

1 
1 t   

1 
2 t   

1 
3 t   

1 
4 t   

1 
5 t   

1 
7 p   

1 
8 p   

1 
9 p   

1 
4 p   

1 
3 p   

1 
2 p   

1 
1 p   

1 
0 p   

 
 
   

5   

5   

5   

5   

5   

5   

5   

5   

1 
9 t   

1 
8 t   

1 
7 t   

1 
6 t   

2 
7 p   

2 
6 p   

2 
5 p   

2 
4 p   

2 
3 p   

2 
2 p   

2 
0 p   

2 
1 p   

2 
7 t   

2 
6 t   

2 
5 t   

2 
4 t   

2 
3 t   

2 
0 t   

2 
1 t   

2 
2 t   



 In [5] is proved the following minimally restrictive 

policy: If a PN, G, contains any deadlock structure, then it 

will reach some marking m for its initial marking m0 such 

that D(m)≠∅. So, to avoid deadlock, it is necessary to 
restrict the number of tokens in every deadlock structure, 

D, meaning that the number of tokens in 0D must be not 

greater than ∑
∈

−
)(

1
DRt

rC , where 0D denotes the union set 

of 0t for all t∈D, i.e., 0D={ 0 t / t∈D}.  

For a given transition t∈T, we let 0t denote the process 

place in Pp, which are input places for t. A transition t∈T 

is process enabled if m( 0 t) ≥ 1. For the given example in 
Fig. 1, we need to construct the restriction policy by 

restricting the number of tokens in 
0
D for each deadlock 

structure D of PN within ∑
∈

−
)(

1
DRr

rC . The deadlock 

structures of PN from the left side in Fig. 1 are:  

 

D1 = {t
1

4 , t
1

5 , t
1

6 , t
1

7 },                   (8) 

 

D2 = {t
1

5 , t
1

6 , t
1

7 , t
1

8 },                   (9) 

 

D3 = D1∪D2 = {t
1

4 , t
1

5 , t
1

6 , t
1

7 , t
1

8 }.               (10) 

 

Since R(D1)=R(D2)=R(D3)={I1, O1, I2, O2} and D1⊆D3, 

D2⊆D3, the restriction policy for deadlock avoidance only 

needs to restrict the number of tokens in the places of 0D3 

within:  

 

∑
∈

−
)( 3

1
DRr

rC = CI 1
+ CO 1

+ CI 2
+ CO 2

– 1 = 

         = 5 + 5 + 5 + 5 – 1 = 19.               (11) 

 

For example, we consider a marking m∈RM(G, m0) 

defined by:  

 

      5 if p∈ { }
33
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m(p) =                  (12)  

      0, otherwise 

 

where transitions t4, t5, t6, t7 are in deadlock. D1={t4, t5, t6 , 

t7} is a deadlock structure and D1 ⊂ D3. The marking m is 

not reachable under the control, because there are allowed 

at most 19 tokens in the places of 0 D3 = {p3, p4, p5, p6, 

p7}. This number, i.e. 19, is the largest number of tokens 

which can enter in places of 0 D3 and no deadlock will 

occur.  
The PN realisation with the restriction policy is: 

 

X = X3 = (PX, {t3, t8}, IX, OX, mX 0
)               (13) 

 

as shown in Fig. 2. 

 
 

Figure 2. An example of PN restrictive deadlock avoidance policy 

 

For the entire PN in Fig. 1, using the same principle we 

have the next deadlock structures, and unions of them: 

D0 = {t
1

4 , t
1

5 , t
1

6 , t
1

7 },                 (14) 

 

D1 = {t
1

5 , t
1

6 , t
1

7 , t
1

8 },                 (15) 

  

D2 = {t
1

4 , t
1

5 , t
1

6 , t
1

7 , t
2

2 },                (16)  

 

D3 = {t
1

5 , t
1

6 , t
1

7 , t
1

8 , t
2

2 },                (17) 

 

D4 = {t
1

2 , t
1

3 , t
1

4 , t
1

5 , t
2

2 , t
2

3 },                (18) 

  

D5 = {t
1

3 , t
1

4 , t
1

5 , t
1

6 , t
2

3 , t
2

4 }.                (19) 

The PN restrictive avoidance policy for the PN in Fig.1 

is given in Fig. 3. 

 
Figure 3. The PN restrictive deadlock policy for the net in Fig. 1 

 

III. CONTROLLERS FOR STOCHASTIC SYSTEMS 

The previous paragraph presented an efficient method 

to avoid the deadlocks when the number of any key kind 

resources is greater than one [4], [5]. But, what is to do 

when the number of key resources is zero? In this case, 

the deadlocks appear because no transition is resource 

enabled for any marking. This case may appear when key 

resources are machines with the same reliability and with 

the same availability. Because the appearance of 

breakdowns for machines is a stochastic process, we shall 

study it with Markov chains by associating a probability 

measure to each state transition. We shall study the safety 

of Markov chains [6] by an example. Consider a single 

machine which operates in either of its two states: “up” 

and “down”. Let the probability that the machine 

maintains its current state at the next step is given by p 

(respectively, q) if the current state is up (respectively, 

down). Then the state set of the machine is given by 

A={up, down}, and the state transition matrix is given by:  

 

     p     1-p 

PA =                      (20) 

    1-q     q 
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Figure 4.  Markov chain model of a machine 

 

Fig. 4 illustrates graphically the above relation, where p 

represents the machine function of intensity of usage and 

q the function of intensity of maintenance. 

The entries of the state transition matrix can be 

controlled at any given state. Two types of control are 

underlined, namely, the intensity of usage, and the 

intensity of maintenance. In the up state, p is an 

increasing function of the intensity of maintenance, and a 

decreasing function of the intensity of usage. In the down 

state, q is a decreasing function of the intensity of 

maintenance, and it does not depend on the intensity of 

usage, since the machine is not used in its down state. 

We consider the definition of safety of a Markov chain 

given in [6]:  

A given Markov chain with state transition matrix 

P∈[0,1]n x n is said to be safe with respect to m if the state 
probability distribution vector remains bounded above by 

m at all steps, i. e., for all k≥0, Π0⋅P
k≤m.  

We use Πm={π∈Π / π≤m} to denote the set of all safe 

state probability distribution vectors. Here, m∈[0,1]n 
denotes a unit interval valued row vector that imposes a 

safety specification. For the considered example (Fig. 4) 

suppose it is desired that at any step the machine is never 

down with probability more than 25%. Then the safety 

specification for the machine is given by m=[1, 41 ], 

where m1=1 implies that the probability of being in the up 

state can be anything, and m2= 41  implies that the 

probability of being in the down state must not exceed 

41 =25%. Following the algorithm given in [6], we 

obtain a necessary and sufficient condition on PA so that 

the state probability distribution vectors of the controlled 

Markov chains remains safe at all steps, i.e., when 

Π0∈Πm, we also have: 

  

Π0 ⋅ PA∈ Πm.                  (21) 

 

We obtain constrains p and q which satisfy the above 

controlled Markov chain. For the given example, 

assuming that p≥1-q, for a state of safety enforcing 
controller with state matrix:  

 

 

   p      1-p 

PA =                     (22) 

           1-q      q 

 

 

we have: 

 

(p ≥ 1-q) ∩ (3p-q ≥ 2).                 (23) 

The above relations are true for the set of safe state 

probability distribution vector: 

 

         Πm = { π ≤ [1, 41 ]}              (24) 

 

In [7], [8], we built an algorithm to determine the 

availability of a FMS modeled with a Markov chain with 

recovery. That model shows that the availability of a 

system can decrease to zero if the repair factor of 

resources is less than the breakdown factor of resources. 

So, if all the key resources have the same reliability, or, 

else said, they have the same state safety-enforcing 

controller, then a deadlock situation occurs in the system. 

In this situation the PN model has no transition 

resource enabled, as we discussed earlier.  

In this paragraph we show that there is always a safe 

state controller for a resource system. In order to avoid 

the occurrence of deadlock situations in a multi-resource 

system, we propose the following policy: we admit the 

PN model discussed in the second paragraph for which 

we propose the restrictive relation:  

 

1 ≤ Number of tokens in 0D for any 

deadlock structure ≤ ∑
∈

−
)(

1
DRr

rC                 (25) 

 

where the involved terms have the signification given in 

the second paragraph.  

The above relation involves that the key resources must 

not have the same availability (respectively, they must not 

have the same state safety-enforcing controller). 

This goal can be achieved either when we use different 

types of key resources, or, when it is necessary to use the 

same type of key resources, these must not have the same 

service life. That means, they must be utilised starting 

from different moments of time, and at different intensity 

of performance requirements. 

 

IV. ILLUSTRATIVE EXAMPLE: A MARKOV 

MODEL FOR EVALUATING THE AVAILABILITY 

OF FMS 

For the flexible manufacturing system depicted in 

Fig.5, we assume that the machines are failure-prone, 

while the load/unload station and the conveyor are 

extremely reliable. 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Logical model for a flexible manufacturing system 
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Assuming the failure times and the repair times to be 

exponentially distributed, we can formulate the state 

process as a continuous time Markov chain (CTMC). The 

state process is given by {X(u), u ≥ 0} with state space 

S={(ij), i∈{0,1,2}, j∈{0,1}}, where i denotes the number 
of machine working, and j denotes the status of the 

material handling system (load station and conveyor): up 

“1”, and down “0”. We consider the state time 

independent (or time dependent) failure case and the 

operation dependent failure case separately. 

A. Time dependent failures 

In this case, the component fails irrespective of whether 

the system is operational or not. All failure states are 

recoverable. Let ra and rm denote the repair rates of the 

material handling system (MHS) and a machine, 

respectively. The state process is shown in Fig. 6a.  
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Figure 6. State process of a FMS with time-dependent failures: (a) State 

process for a state-independent failure model, (b) Decomposed 

failure/repair process 

 

Because the failure/repair behaviour of the system 

components is independent, the state process can be 

decomposed into two CTMCs as shown in Fig. 6b. 

Analytically, the state process is expressed by relations: 

S0 = {(21), (11)} and SF = {(20), (10), (00)}. For each 

state in SF no production is possible since the MHS or 

both the machines are down. In Fig. 6b the failure/repair 

behaviour of each resource type (machines or MHS) is 

described by a unique Markov chain. Thus, the transient 

state probabilities, pij(t), can be obtained from relation: 

 

pij(t) = pi(t)⋅pj(t)                 (26) 

 

where pi(t) is the probability that i machines are working 

at time t for i = 0,1,2.  

The probability pi(t) is obtained by solving (separately) 

the failure/repair model of the machines. We note with 

pj(t) the probability that j MHS (load/unload station and 

conveyor) are working at instant t, for j = 0,1.  Let fa and 

fm denote the failure rates of the MHS and of a machine 

respectively. 

B. Operation dependent failures 

 Assume that when the system is functional, the resources 

are all fully utilized. Since failures occur only when the 

system is operational, the state space is: S = {(21), (11), 

(20), (10), (01)}, with S0 = {(21), (11)}, SF = {(20), (10), 

(01)}. The Markov chain model is shown in Fig. 7. 

Transitions representing failure will be allowed only 

when the resource is busy. Transitions rates can however 

be computed as the product of the failure rates and 

percentage utilization of the resource. If Tk
ij 
represents the 

average utilization of the kth resource in the state (ij), the 

transition rates are given in Fig. 7. 

 

 

 

 

 

 

 

 

 

 
 

Figure 7. State process of a FMS with state-dependent failures 

 

C.  Numerical example 

For the FMS presented in this paper, in the Table 1 are 

given the failure/repair data of the system components. 

We note with Tk
ij the average utilization of the system of 

the k
th
 resource in state (ij); Tk

ij
 = 1 since the utilization in 

each operational state is 100% for all i={0,1,2}, j={0,1}, 

k=4. The other notations used in table 1 are: f is the 

exponential failure rate of resources, r is the exponential 

repair rate of resources, Np is the required minimum 

number of operational machines in cell p, p = {1,2}, and 

np is the total number of machines in cell p. 

 
TABLE 1 

 DATA FOR THE NUMERICAL STUDY 

 R F Np np Tk
ij 

Machines 1 0,05 1 2 1 

MHS 0,2 0,001 1 1 1 

 

From Fig. 6 and Fig. 7 we calculate the corresponding 

infinitesimal generators and after that, the probability 

vector of CTMC. With relation (1) we calculate the 

availability of FMS given in this article. The 

computational results are summarized in Table 2 for the 

state process given in Fig. 2 (FMS with time-dependent 

failures), and respectively in Table 3 for the state process 

given in Fig. 7 (FMS with state-dependent failures). We 

consider the system operation over an interval of 24 hours 

(three consecutive shifts). 
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TABLE 2 

 COMPUTATIONAL RESULTS FOR THE FMS IN FIG. 6 

Time hour Machines MHS System 

Availability 

0 1.0000 1.0000 1.0000 

1 0.9800 0.9548 0.9217 

4 0.9470 0.8645 0.7789 

8 0.9335 0.8061 0.7025 

12 0.9330 0.7810 0.6758 

16 0.9331 0.7701 0.6655 

20 0.9330 0.7654 0.6623 

24 0.9328 0.7648 0.6617 

 

TABLE 3 

 COMPUTATIONAL RESULTS FOR THE FMS IN FIG. 7 

Time hour Machines MHS System 

Availability 

0 1.0000 1.0000 1.0000 

1 0.9580 0.9228 0.9001 

4 0.9350 0.8228 0.7362 

8 0.9315 0.8039 0.7008 

12 0.9310 0.7798 0.6739 

16 0.9320 0.7688 0.6632 

20 0.9318 0.7639 0.6598 

24 0.9320 0.7636 0.6583 

 

The results of the availability analysis of the flexible 

manufacturing system are illustrated in Fig. 8, which 

depicts the availability of the system as a function of the 

time. The numbers x = 2, 3 indicate the system in Fig. 6, 

respectively Fig. 7. One can see from Fig. 8 that the 

layout with FMS with time-dependent failures is superior 

to that with FMS with state-dependent failures. 

 

 

 

 

 

 

 

 

Figure 8. Availability analysis of the flexible manufacturing system 

given in Fig. 5 

 

V. CONCLUSIONS 

Maintenance philosophy necessitates the development 

of new operation maintenance decision-making tools.  

Increasing performance requirements will result in 

increasing stresses applied to structural components that 

lead to greater damage accumulation in the components 

and shorter service life. Therefore, performance reliability 

obviates the need for optimal control subject to reliability 

constraints. For healthy components, higher performance 

may be achieved while maintaining the requisite 

reliability. The same is not true for ageing components 

where a decision to perform maintenance may be 

necessary before higher performance is achievable [7]. 

In this paper we have studied the problem of deadlock 

avoidance in PN models representing production lines 

with shared resources. We have presented a restriction 

policy for avoiding deadlocks. An advantage of the 

restriction policy procedure is that it is based both on PN 

model and Markov chains model. An illustrative example 

using analytical technique for the availability evaluation 

of the flexible manufacturing systems was presented. The 

novelty of the approach is that the construction of large 

Markov chains is not required. Using a structural 

decomposition, the manufacturing system is divided into 

cells. For each cell a Markov model was derived and the 

probability was determined of at least Ni working 

machines in cell i, for i = 1,2,..,n and j working material 

handling system at time t, where Ni and j satisfy the 

system production capacity requirements. The model 

presented in this paper can be extended to include other 

components, e.g., tools, control systems. The results 

reported here can form the basis of several enhancements, 

such as conducting performance studies of complex 

systems, with multiple part types. So, other policies may 

extend the proposed one. 
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