
 

 

 

  

Abstract— Petri nets provide a compact and graphical way to 

model large and complex discrete event systems (DES). For 

such systems, the state-space explosion is problematic. Fluid 

stochastic event graphs are decision free Petri nets, which can 

represent systems with failures. This paper presents an 

estimation algorithm for state space estimation and 

optimization of failure-prone DES. 

Keywords— Discrete event systems, fluid Petri nets, space 

estimation. 

 

I. INTRODUCTION 

CCORDING to the complexity of modern technological 

processes, many model analysis and control algorithms 

are based on the model state-space sizes. In this paper 

we propose, based on the works in [1] and [2], an algorithm 

for analyzing and optimizing manufacturing systems subject 

to failures. It is based on the fluid approximation of a class 

of Petri nets and called fluid-event graphs. In a fluid/event 

graph, places hold fluids instead of discrete tokens. 

Transitions fire continuously, drawing fluids out of its input 

places and injecting fluids into its output places. Firing 

speed of transition is limited by a maximal speed. For 

failures systems, transitions can be either in operating state 

or in failure-state. The discussed systems are hybrid, that 

means they have discrete-event components characterized 

by failures and repair of transitions, and continuous 

components characterized by markings and transition firing 

speeds. We assume that the discrete-event component does 

not depend on the continuous component [2]. This 

assumption is related to the time dependent failures of the 

failure – Prone manufacturing systems. The following users 

for the state–space size estimation can be mentioned: 
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- Evaluating the trade-off between model detail and solution 

complexity. This is necessary because, at some point,  

 

dependent on the specific model, additional computation 

time is not worth the improvement in accuracy. 

- Determining the appropriateness of a particular analysis 

technique. Algorithms optimized for “small” or “large” 

problems can be applied appropriately. 

The problem of state–space size estimation of Petry nets 

(PN) is being pursued in two manners: top-down and 

bottom–up [3], [4]. At the expense of complete generality, 

the bottom–up approach offers better accuracy. 

 

II. FLUID PETRI NETS 

Fluid Petri nets are an extension of classical Petri nets [5]. 

In fluid PN (FlPN), marking a place is a real number called 

the token content. Also, because transitions fire 

continuously according to some firing speed, we shall say 

firing speed instead of firing sequence. In fluid Petri nets, 

we associate to each transition a maximal firing speed, and 

flowing notations are used: 

Ai = maximal firing speed of transition i; 

ait = firing speed of transition I at time t; 

mit = marking of place pi at time t; 

moi = initial marking of place pi (mio = moi); 

qit = cumulative firing quantity of transition I up to time t. 

A control policy ait it is feasible if 0≥itm  

 A transition can fire at its maximal firing speed if each of 

its input places has positive markings. A generally firing 

policy for fluid Petri nets it is [2]: 
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Where Tj is the transition which follow the place pi with 

marking mit. {T} is the set of transitions in the considered 

fluid Petri net. 

For example let us consider the fluid Petri net in Fig.1. 

In Fig.1 consider the place p1 and assume that A1≥A2. Then 

transition T2 can fire at its maximal speed and the fluid 

level of place p1 evolves as shown in Fig.2.a.  

Availability of Fluid Stochastic Event Graphs  

Calin I. Ciufudean, Member, IEEE,  Camelia I. Petrescu, and Adrian G. Graur  

A 



 

 

 

If A1≥A2, then T3 fires at its maximal speed until place p1 

becomes empty, and then it fires at reduced speed A1. 

Fig.2.b. illustrates the evolution of the fluid level. In 

general, the fluid level of each place evolves piecewise 

linearly according to the firing speed of its input / output 

transitions. 

 

 

In the following analysis we consider a state estimation 

function (Se-function) that describes the net’s state-space 

size, that has Ai maximal firing speed of transition i, 

i=1,…,n, n being the number of places in the net. A Se-

function has the following properties: 

1) It is a function of Ai only. Thus, the influence of any 

control tokens must be invariant with respect to Ai, 

i=1,…,n.∈{T} 

 

2)se(Aj)=0 implies the subnet cannot possibly contain Aj 

maximal firing speed of transition j∈(1,…,n) ∈{T}. 

 

III. SE – FUNCTIONS FOR BASIC CONFIGURATIONS OF FLPN 

In this paper, we determine the size of the state-space for 

the underlying system, irrespective of his dimension, by 

decomposing it into several basic configurations e.g., 

subnets (SN) that can form complex (large) FlPN, when 

combined interconnections for mechanisms of execution 

and failure/repair are presented here. FlPN can model the 

execution of sequential, parallel and choice operations. Fig. 

3 illustrates two subnets in series, whereby fluid passes 

from SN1 to SN2. 

The r tokens possible distribution among the places 

corresponding to the subnets SN1, and SN2 is due to the 

fluid repartition among the respective places, separated by 

transitions Ti, I=1,2,3, with ait firing speed.  

 

 

The interconnection Se–function is determined from the 

fact that tokens can be distributed between the two subnets 

according to the following relation [2], [6]: 
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Where ),(iSe
nta the k

th
 partition of r, is an n-vector of non-

negative integers that sum to r. 

Ait is the firing speed of transition i, i=1,2, at time t. 

For n subnets, the Se-function is: 
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Parallel execution of operation is depicted in Fig.4. For 

every token entering through T1, there is one in each subnet. 

The Se-function is given by relation (4): 
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The choice among sub-nets is depicted in Fig.5. There are 

three constructs to consider: SN1, SN2, and, as a group the 

places P1 and P2. Having r tokens among P1 and P2 

generates 12
+= rCr  states.  

For n sub-nets, we have: 
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FlPN of systems containing unreliable components, may 

include models for the failure and repair of these 

components. Fig.6 depicts a common model for these 

operations. Under normal functioning, T2 fires instead of 

Tfail, leaving SN2 out of consideration. 

 

 

Fig.1. An example of fluid Petri net 
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Fig.2. Evolution of fluid Petri net given in Fig. 1 
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Fig.3. Series basic interconnection of FlPN 

 

T3 T2 

T1 
SN1 SN2 



 

 

 

The choice between T2 and Tfail allows SN2 to be used by 

all r tokens. Thus, SN1 and SN2 are, in series, producing: 
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IV. AN EXAMPLE OF FLPN WITH FAILURE AND 

REPAIR 

In Fig.7 a number of modeling assumptions were made for 

the convenience of the presentation: 

a) The tasks performed by M2 and R2 were aggregated into 

a single transition representing loading and unloading at 

M2. 

b) The time associated with the unloading tasks performed 

by R1 is incorporated into transition T2. 

c) The failure-repair loop is added to M1. 

d) The time delays are associated with transitions only. 

e) A Firing speed of a transition equals to the reciprocal of 

the average firing delay time of the corresponding event or 

operation. 
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Fig.7. FlPN model for the production line 
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Since we are interested in the steady-state behavior of the 

FPN, the past exit and entry path are connected, and the 

number of parts in the system is limited by the content of 

place P6. The FlPN presented in Fig.7 consists of three 

subnets: SN1(P2Tfail,P4,Trepair), SN2(T1,P2,T2, P5) and 

SN3(T2,P3,T3,P6). For each of these subnets, we apply the 

corresponding formula (one of those given above) in order 

to calculate the Se-function. The global se-function of the 

FPN in Fig.7 is given by the following relation, according 

to SNi, i=1,2,3, connections: 
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Where, r is the content of place P6. 

Using (7) and the Se- functions given in (6) for SN3, 

respectively in (2) for SN1 and SN2, we obtain, as a function 

of r, the state estimating function for the net given in Fig.7. 

For example, we suppose (in order to simplify the calculus) 

that Aj = const = 1, where j=1,…,5 is the number of 

transitions in Fig.7 (see relation (1)). Thus, we obtain the 

following Seglobal for the net given in Fig.7:  
TABLE 1. SE FOR THE NET GIVEN IN FIG.7 

 
r Seglobal 
0 1 

1 12 

2 84 

3 132 

. 

. 

. 

. 
 

 

 

Fig.4. Parallel basic interconnection of FPN 
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Fig.5. Free choice basic interconnection of FlPN 

 
 

 

Fig.6. Failure/repair interconnection of FlPN 
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CONCLUSION 

A bottom-up state-space size estimation technique for fluid 

Petri nets (FlPN) has been described. The estimation relies 

on the computation of state estimating functions (Se 

functions). Several researchers have documented the state-

space explosion behavior but there is no direct correlation 

between the specific behavior of FPN and the used 

mechanisms such us top-down and bottom-up. A lot of 

model analysis and control algorithms are based on the 

model state space, and there it is why they are affected by 

large state space sizes. Benefits of this approach include 

simple representation of Se-functions that facilitate 

automation, and the possibility to interject hand-computed 

results into the estimation. Errors in the estimation may 

result from changes in the FlPN model to permit analysis in 

the Se functions. Further research will include the colored 

Petri nets into the FlPN, and the calculus of theirs Se-

functions. 
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