
 

 

 

  

Abstract— Some evaluation techniques for distributed 
systems are prevented. In order to model clearly the    

synchronization, involved in these systems, a Petri net model is 

used. We focus on the performance evaluation of a strongly 

connected event graph with random firing times. We have an 

upper bound and a lower bound for the average cycle time of 

event graphs knowing the initial marking. We propose an 

algorithm to evaluate the bounds used to calculate an average 

cycle time. An application of the results to the evaluation of a 

Kanban system is proposed. 

Keywords— Cycle-time, Petri net, distributed system, upper 

bound, lower bound, firing time. 

 

I. INTRODUCTION 

 

N this paper, we focus on techniques for the prediction 

and the verification of performance of distributed 

systems. We consider a distributed system as a loosely or 

a tightly coupled processing elements working   co-

operatively and concurrently on a set of related tasks. In 

general, there are two approaches for performance 

evaluation [1]: deterministic models and probabilistic 

models. In deterministic models, it is usually assumed that 

the task arrival times, the task execution times, and the 

synchronisation involved are known in advance to the 

analysis. This approach is very useful for performance 

evaluation of real-time control systems with hard deadline 

requirements. In probabilistic models, the task arrival rates 

and the task service time are usually specified by 
probabilistic distribution functions. Probabilistic models 

usually give a gross prediction on the performance of a 

system and are good for easy stages of system design when 

the system characteristics are not well understood. In this 
paper, we focus on performance analysis of distributed 

systems and for to model clearly the synchronisation 
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involved in concurrent systems, the Petri net model is 
chosen. In this paper we consider event graphs as Petri nets 

in which each place has one input transition and one output 

transition. It has been shown that distributed systems can be 

modelled as event graphs [2], [3]. When the manufacturing 

times are deterministic (respectively stochastic), the cycle 

time (respectively the mean cycle time) of the model is the 

period (respectively the mean period) required to 

manufacture a given set of parts which fits with the required 

ratios. The smaller the cycle time (respectively the mean 

cycle time) the higher the productivity of the system.  

When the firing times of transitions are deterministic, it is 

possible to define the cycle time of an elementary circuit. 

This is given by the ratio of the sum of the firing times 

associated with the transitions of the circuit by the number 

of its tokens, which is constant (we address strongly 

connected graphs, which have the number of tokens in any 

elementary circuit, constant): 
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Where i = number of elementary circuits of the graph; 

Ci = cycle time of elementary circuits i;  

∑=
n

i

ii rT  is the sum of the execution times of the 

transition in circuit i; 

∑=
n

i

ii MN  is the total number of tokens, in the places 

in circuit i; 

In this case it has been proven that the cycle time of a 

strongly connected event graph is equal to the greatest cycle 

time of all elementary circuits. Furthermore, given a value 

C* greater than the largest firing time of all transitions, an 

algorithm has been proposed in [2] to reach a cycle time 

less than C*, while minimizing a linear combination of the 

number of tokens in the places. The coefficients of the 

linear combination are the elements of a p-invariant. When 

the event graph is the model of a ratio-driven distributed 

system (such as manufacturing system), C* has to be greater 

than the largest cycle time of all command circuits [4]. 
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A command circuit is an elementary circuit, which joins the 

transition which model the operations performed on the 

same machine. Such a circuit contains one token to prevent 

more than one transition firing at any time in each 

elementary circuit. 

In other words, C* must be greater than the time required 

by the bottleneck machine to perform a sequence of parts 

which fits with the production ratios. 

In the case of random firing times, it is no longer possible to 

take advantage of the elementary circuits to evaluate the 

behavior of the event graph and to reach a given 

performance. Thus, the results presented in this paper, 

which aim at reaching a given mean cycle time in a steady 

state while minimizing a linear combination of the place 

markings, are particularly important at the preliminary 

design level of manufacturing systems working on a ratio-

driven basis. This applies in particular to distributed 

systems in flexible manufacturing systems. 

 

II. FRAMING THE MEAN CYCLE TIME 

 

   It has been proven [5] that a marking belonging to the 

optimal solution under a periodic operational mode (POM) 

is an optimal solution under an earliest operational mode 

(EOM). So, we consider the earliest operational mode of 

the event graph, and we assume only non pre-emptive 

transitions firings. We further assume that, when transition 

fires, the related tokens remain in the input places until the 

firing process ends. They then disappear, and one new 

token appears in each output place of the transition. 

We use the following notations:  

 

Mi         = the marking of the elementary circuits, i ∈  N. 
+∈RXk

t = random variable generating the time required 

for the k
th
 firing of transition t, k∈  N. 

It(n)       = instant of the n
th
 firing initiation of transition t; 

E           = set of elementary circuits; 

s(e)        = sum of the random variables generating the 

firing; 

∑
∈et

1

tX   = sum of times of the transitions belonging to e; 

Et          =set of elementary circuits containing transition t. 

We assume that the sequences of transition firing times are 

independent sequences of integrable random variables. It 

was proven in [4] that there exists a positive constant s(M0) 

such that: 
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Where: 

Cm = the average cycle time of the event graph. 

Furthermore, we denote by mt the mean value of 
k

tX  and 

by qt the standard deviation of 
k

tX , i.e., mt = F[
k

tX ] and  
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A. The lower bound of mean cycle time 

 

   The cycle time of the deterministic problem obtained by 

replacing the random variables, which generate the firing 

times, by their mean values is a lower bound of the mean 

cycle time [4]. The following relation proven in [2] 

provides a better lower bound for the value of the mean 

cycle time than the previous one: 
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Where t
*
(e) is a transition with the greatest average firing 

time, i.e., m t*(e) = max t∈emt. 

 

B. The upper bound of mean cycle time 

 

   With M0 being initial marking, we derive a marking M1 

from M0 by leaving the places, which are empty in M0, 

empty in M1 and by reducing to one the number of tokens in 

the places containing more than one token in M0.  

Thus, M1(p) ≤M0(p) for any set of places of the strongly 

connected event graph. An earliest operation mode running 

with the initial marking M1 leads to a greater mean cycle 

time than the one obtained when starting from M0. Then, 

starting from M1, we apply to the event graph the earliest 

operation mode, but we block the tokens as soon as they 

reach a place already marked in M1. This operation mode is 

referred as the constrained mode [3]. 

We denote by C* the mean cycle time obtained by using the 

constrained operation mode when M1 is the initial marking. 

We know [2] that C* is greater than the mean cycle time 

obtained by using the earliest operation mode starting from 

M1 which, in turn, is greater than the mean cycle time 

obtained with the earliest operation mode when the initial 

marking is M0. Thus, C* is an upper bound of the solution 

to our problem (i.e. the mean cycle time obtained starting 

from M0 when using the earliest operation mode). The 

following relation defines this upper bound:  

 

C* = F[max
Zz∈

s(z)]          (4) 

 

Where Z is the set of directed path verifying the following 

properties: 

 



 

 

 

- the origin and the extremity of any path is a marked place; 

- it is no marked place between the origin and the extremity 

of the path. 

 

 

III. EVALUATION OF THE EVENT GRAPH 

 

In the reminder of the previous section, we compare the 

previous bounds with the existing ones.  

Under the assumption of non-preemptive transition firing, it 

was proven in [1] that: 
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       = old lower bound              (5) 

 

C* ≤∑
t

tm  = old upper bound.       (6) 

 

The following relations show that the new bounds are better 

than the old ones. But how closer are they to the optima 

solution? In order to answer this question we give the next 

algorithm, inspired from operational research area, for verifying 

system performance: 

 

a) Express the token loading in a p x p matrix P, where p  

is the number of places in the Petri net model of the system. 

Entry (A,B) in the matrix equals x if there are x tokens in place 

A and place A is connected directly to place B by a transition; 

otherwise (A,B) equals 0.  

b) Express transition time in an pxp matrix Q. Entry (A,B) in 

the matrix equals to the mean values of the random variables 

which generate the firing times (i.e., 
k

tX ) if A is an input place 

of transition i and B is its output place. Entry (A,B) contains the 

symbol “w” if A and B are not connected directly as described 

above.    

c) Compute matrix CP-Q (with p – w = ∞ , and C = (C* + 

C**)/2, for p∈N), than use Floyd’s algorithm to compute the 

shortest distance between every pair of nodes using matrix CP-

Q as the distance matrix. The result is stored in matrix S. There 

are three cases: 

 

1) All diagonal entries of matrix S are positive (i.e., CNk – Tk > 

0 for all circuits - see relation (1)) the system performance is 

higher than the given requirement; 

 

2) Some diagonal entries of matrix S are zero’s and the rest 

are positive (i.e., CNk – Tk = 0 for some circuits and CNk – Tk > 

0 for the other circuits) - the system performance just meet the 

given requirement; 

3)    Some diagonal entries of matrix S are negative (i.e., CNk – 

Tk < 0 for some circuits) - the system performance is lower than 

the given requirement. 

In addition we may say that when a decision-free system runs at 

its highest speed, CNk equals to Tk  for the bottleneck circuit. 

This implies that the places in the bottleneck circuit will have 

zero diagonal entries in matrix S.  System performance can be 

improved by reducing the execution times of some transitions 

in the circuit, or introducing more concurrency in the circuit (by 

modifying the initial marking), or increasing the mean cycle 

time (by choosing another average value for this). 

 

 

IV. EVALUATION OF KANBAN SYSTEM OPERATIONS 

 

As we well know [3], an event graph can be used to model a  

Kanban system. An example of simple production line will 

be use to exemplify the above discussed problems. The 

production line consists of two machining tools (M1 and 

M2), two robot arms and two conveyors. Each machining 

tool is serviced by a dedicated robot arm, which performs 

load and unload tasks. One conveyor is used to transport 

workpieces, a maximum of two at a time. The other 

conveyor is used to transport empty pallets. There are three 

pallets available in the system. Each workpiece is machined 

on M1 and M2, in this order. The stochastic timed Petri net 

model of this system is shown in Fig.1. The initial marking 

of the net is (300012111)
T
.   

 
 

 

Fig.1. Stochastic Petri net model for a manufacturing system 

 

 

When time delays are modeled as random variables, it has 

become a convention to associate time delays with the 

transition only. The transition involved, have the associated 

time delays expressed in time units. The random variables 

X1, X2, X3, X4 are assigned to the transitions t1, t2, t3, t4, 

respectively. X1 is uniformly distributed on [0.2], X2 and X3 

are random variables with F[X2] = 11 t.u. and F[X3] = 1 t.u. 

X4 is a constant and equal to 17 t.u. The Petri net model 

contains four loops. The time delays associated with these 

loops, as well as their token contents are: 

1) loop: t1 p2 t2 p3 t3 p4 t4 p1 t1, loop delay: 30 t.u., token 

sum: 3, cycle time: 10 t.u. 
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2) loop: t1 p2 t2 p5 (or p8 ) t1, loop delay: 12 t.u., token sum: 

1, cycle time: 12 t.u. 

3) loop: t2 p3 t3 p6 t2, loop delay: 2 t.u., token sum: 2, cycle 

time: 1 t.u.   

4) loop: t3 p4 t4 p7 (or p9 ) t3, loop delay: 18 t.u., token sum: 

1, cycle time: 18 t.u. 

Then, the minimum cycle time is 18 time units. This means 

that it is takes a minimum of 18 time units to transform a 

raw workpiece into a final product. Computing the lower-

bound and the upper bound of  cycle time of the event 

graph given in Fig.1., using the relations (3) and (4), we 

obtain the values: C**≥ 12 t.u.; C*≤  18 t.u.  

  

 CONCLUSIONS 

 

An important result in this paper is that it is always possible to 

reach a mean cycle time as close as possible to the greatest 

mean firing time using a finite marking, assuming that a 

transition cannot be fired by more than one token at each time.  

This result holds for any distribution of the transition firing 

time.  

An algorithm for verifying the distributed systems performance 

was introduced. An approach for computing upper and lower 

bounds of the performance of a conservative general system is 

presented. However, the bounds produced may be loose.  

Further research will focus the condition under which a mean 

cycle time can be reach with a finite marking. 
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